Application of Enzymes for the Reduction of PFI Revolutions in the Secondary Pulping Process and Characteristics of Thermomechanical Pulp

被引:4
作者
Wu, Shuai [1 ]
Ma, Xiaojuan [1 ]
Cao, Shilin [1 ]
Chen, Lihui [1 ]
Huang, Liulian [1 ]
Huang, Fang [1 ]
机构
[1] Fujian Agr & Forestry Univ, Coll Mat Engn, Fuzhou 350108, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Enzyme; TMP; Refining energy; REFINING ENERGY; CHIPS;
D O I
10.15376/biores.15.4.7487-7502
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
Three enzymes, mannanase, xylanase, and cellulase, were applied for hydrolysis of thermomechanical pulp (TMP) primary discharge prior to PFI refining, aiming to study the effect of enzymatic hydrolysis on the required number of PFI revolutions. The quantity of reducing sugar was used as an indicator for enzyme hydrolysis efficiency. Then, under the optimized enzyme loading, treated and un-treated pulp were refined with different PFI revolutions. Subsequent fiber characteristics, such as fiber length and fines content were examined. Under the optimized enzyme loadings and a given 20000 PFI revolutions, in comparison with the control pulp, mannanase and xylanase pre-treatment could save PFI refining revolutions by 20% and 25%, respectively. There was no significant energy savings for the cellulase-treated pulp. During the hydrolysis, the enzyme broke down TMP fibers into shorter pieces and yielded more fines than the control pulp. Among the three enzymes, cellulase showed the highest efficiency in fiber breakdown, mannanase in the middle, xylanase the lowest. Longer hydrolysis time (more than one hour) had no evident effect on the pulp freeness reduction and reducing sugar production. Among the three enzymes, under the optimized enzyme loading, cellulase was the most efficient for enhancing production of reducing sugars.
引用
收藏
页码:7487 / 7502
页数:16
相关论文
empty
未找到相关数据