Machine Learning Data Augmentation Strategy for Electron Energy Loss Spectroscopy: Generative Adversarial Networks

被引:0
作者
del-Pozo-Bueno, Daniel [1 ,2 ]
Kepaptsoglou, Demie [3 ,4 ]
Ramasse, Quentin M. [3 ,5 ]
Peiro, Francesca [1 ,2 ]
Estrade, Sonia [1 ,2 ]
机构
[1] Univ Barcelona, Dept Engn Elect & Biomed, LENS MIND, 1-11 Marti i Franques, Barcelona 08028, Spain
[2] Univ Barcelona, Inst Nanosci & Nanotechnol IN2UB, 1-11 Marti i Franques, Barcelona 08028, Spain
[3] Scitech Daresbury Campus, SuperSTEM Lab, Keckwick Lane, Daresbury WA4 4AD, England
[4] Univ York, Sch Phys Engn & Technol, Newton Way, Heslington YO10 5DD, England
[5] Univ Leeds, Sch Chem & Proc Engn & Phys & Astron, Woodhouse Lane, Leeds LS2 9JT, England
基金
英国工程与自然科学研究理事会;
关键词
data augmentation; electron energy loss spectroscopy; generative adversarial networks; machine learning; support vector machines; OXIDATION-STATE; GAN; EELS;
D O I
10.1093/mam/ozae014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recent advances in machine learning (ML) have highlighted a novel challenge concerning the quality and quantity of data required to effectively train algorithms in supervised ML procedures. This article introduces a data augmentation (DA) strategy for electron energy loss spectroscopy (EELS) data, employing generative adversarial networks (GANs). We present an innovative approach, called the data augmentation generative adversarial network (DAG), which facilitates data generation from a very limited number of spectra, around 100. Throughout this study, we explore the optimal configuration for GANs to produce realistic spectra. Notably, our DAG generates realistic spectra, and the spectra produced by the generator are successfully used in real-world applications to train classifiers based on artificial neural networks (ANNs) and support vector machines (SVMs) that have been successful in classifying experimental EEL spectra.
引用
收藏
页码:278 / 293
页数:16
相关论文
共 34 条
[11]   Support vector machine for EELS oxidation state determination [J].
del-Pozo-Bueno, D. ;
Peiro, F. ;
Estrade, S. .
ULTRAMICROSCOPY, 2021, 221
[12]   Comparative of machine learning classification strategies for electron energy loss spectroscopy: Support vector machines and artificial neural networks [J].
del-Pozo-Bueno, Daniel ;
Kepaptsoglou, Demie ;
Peiro, Francesca ;
Estrade, Sonia .
ULTRAMICROSCOPY, 2023, 253
[13]   Direct Evidence of a Graded Magnetic Interface in Bimagnetic Core/Shell Nanoparticles Using Electron Magnetic Circular Dichroism (EMCD) [J].
del-Pozo-Bueno, Daniel ;
Varela, Maria ;
Estrader, Marta ;
Lopez-Ortega, Alberto ;
Roca, Alejandro G. ;
Nogues, Josep ;
Peiro, Francesca ;
Estrade, Sonia .
NANO LETTERS, 2021, 21 (16) :6923-6930
[14]   GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification [J].
Frid-Adar, Maayan ;
Diamant, Idit ;
Klang, Eyal ;
Amitai, Michal ;
Goldberger, Jacob ;
Greenspan, Hayit .
NEUROCOMPUTING, 2018, 321 :321-331
[15]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[16]   The Unreasonable Effectiveness of Data [J].
Halevy, Alon ;
Norvig, Peter ;
Pereira, Fernando .
IEEE INTELLIGENT SYSTEMS, 2009, 24 (02) :8-12
[17]  
Tanaka FHKD, 2019, Arxiv, DOI arXiv:1904.09135
[18]  
Heusel M, 2017, ADV NEUR IN, V30
[19]   Advanced Elastic and Reservoir Properties Prediction through Generative Adversarial Network [J].
Ishak, Muhammad Anwar ;
Abdul Latiff, Abdul Halim ;
Ho, Eric Tatt Wei ;
Fuad, Muhammad Izzuljad Ahmad ;
Tan, Nian Wei ;
Sajid, Muhammad ;
Elsebakhi, Emad .
APPLIED SCIENCES-BASEL, 2023, 13 (10)
[20]   α-EGAN: a-Energy distance GAN with an early stopping rule [J].
Ji, Fangting ;
Zhang, Xin ;
Zhao, Junlong .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 234