Machine Learning Data Augmentation Strategy for Electron Energy Loss Spectroscopy: Generative Adversarial Networks

被引:0
作者
del-Pozo-Bueno, Daniel [1 ,2 ]
Kepaptsoglou, Demie [3 ,4 ]
Ramasse, Quentin M. [3 ,5 ]
Peiro, Francesca [1 ,2 ]
Estrade, Sonia [1 ,2 ]
机构
[1] Univ Barcelona, Dept Engn Elect & Biomed, LENS MIND, 1-11 Marti i Franques, Barcelona 08028, Spain
[2] Univ Barcelona, Inst Nanosci & Nanotechnol IN2UB, 1-11 Marti i Franques, Barcelona 08028, Spain
[3] Scitech Daresbury Campus, SuperSTEM Lab, Keckwick Lane, Daresbury WA4 4AD, England
[4] Univ York, Sch Phys Engn & Technol, Newton Way, Heslington YO10 5DD, England
[5] Univ Leeds, Sch Chem & Proc Engn & Phys & Astron, Woodhouse Lane, Leeds LS2 9JT, England
基金
英国工程与自然科学研究理事会;
关键词
data augmentation; electron energy loss spectroscopy; generative adversarial networks; machine learning; support vector machines; OXIDATION-STATE; GAN; EELS;
D O I
10.1093/mam/ozae014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recent advances in machine learning (ML) have highlighted a novel challenge concerning the quality and quantity of data required to effectively train algorithms in supervised ML procedures. This article introduces a data augmentation (DA) strategy for electron energy loss spectroscopy (EELS) data, employing generative adversarial networks (GANs). We present an innovative approach, called the data augmentation generative adversarial network (DAG), which facilitates data generation from a very limited number of spectra, around 100. Throughout this study, we explore the optimal configuration for GANs to produce realistic spectra. Notably, our DAG generates realistic spectra, and the spectra produced by the generator are successfully used in real-world applications to train classifiers based on artificial neural networks (ANNs) and support vector machines (SVMs) that have been successful in classifying experimental EEL spectra.
引用
收藏
页码:278 / 293
页数:16
相关论文
共 34 条
[1]  
Arora S, 2017, Arxiv, DOI arXiv:1703.00573
[2]   Strategies for EELS Data Analysis. Introducing UMAP and HDBSCAN for Dimensionality Reduction and Clustering [J].
Blanco-Portals, Javier ;
Peiro, Francesca ;
Estrade, Sonia .
MICROSCOPY AND MICROANALYSIS, 2022, 28 (01) :109-122
[3]   Independent component analysis: A new possibility for analysing series of electron energy loss spectra [J].
Bonnet, N ;
Nuzillard, D .
ULTRAMICROSCOPY, 2005, 102 (04) :327-337
[4]   Extracting information from sequences of spatially resolved EELS spectra using multivariate statistical analysis [J].
Bonnet, N ;
Brun, N ;
Colliex, C .
ULTRAMICROSCOPY, 1999, 77 (3-4) :97-112
[5]  
Bowles C, 2018, Arxiv, DOI [arXiv:1810.10863, 10.48550/arXiv.1810.10863]
[6]  
Brock A, 2019, Arxiv, DOI arXiv:1809.11096
[7]   Towards calibration-invariant spectroscopy using deep learning [J].
Chatzidakis, M. ;
Botton, G. A. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[8]   ELECTRON-ENERGY-LOSS-SPECTROSCOPY NEAR-EDGE FINE-STRUCTURES IN THE IRON-OXYGEN SYSTEM [J].
COLLIEX, C ;
MANOUBI, T ;
ORTIZ, C .
PHYSICAL REVIEW B, 1991, 44 (20) :11402-11411
[9]   Mapping titanium and tin oxide phases using EELS: An application of independent component analysis [J].
de la Pena, F. ;
Berger, M. -H. ;
Hochepied, J. -F. ;
Dynys, F. ;
Stephan, O. ;
Walls, M. .
ULTRAMICROSCOPY, 2011, 111 (02) :169-176
[10]  
de la Pena F., 2022, hyperspy