Nonlinear Disturbance Observer Incorporated Model Predictive Strategy for Wheeled Mobile Robot's Trajectory Tracking Control

被引:4
作者
Peng, Jiguang [1 ]
Xiao, Hanzhen [1 ]
Lai, Guanyu [1 ]
机构
[1] Guangdong Univ Technol, Sch Automat, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Model predictive control (MPC); nonlinear disturbance observer(NDO); trajectory tracking control; wheeled mobile robot(WMR); NEURAL-NETWORK; MPC; DESIGN; STABILIZATION; SYSTEMS;
D O I
10.1007/s12555-023-0207-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we discuss a nonlinear disturbance observer-based double closed-loop control system for managing a wheeled mobile robot (WMR) and achieving trajectory tracking control. The focus of our study is on the topic of trajectory tracking control for WMR in the presence of external disturbances. Our proposed control strategy addresses the two main issues of velocity constraint and external disturbances. Specifically, we employ a kinematic tracking error model to produce the constrained virtual velocity in the outer loop of a neural-dynamic optimization-based model predictive control (MPC). Additionally, we create a nonlinear disturbance observer (NDO) based on the dynamic model to monitor external disturbances. To achieve accurate trajectory tracking for disturbances compensation, we utilize a robust controller. We confirm the stability of our proposed controller using the Lyapunov theory. Finally, two numerical simulation experiments demonstrate the effectiveness and reliability of our proposed controller.
引用
收藏
页码:2251 / 2262
页数:12
相关论文
共 34 条
[1]  
Al-Araji A., 2011, INT J SIMUL SYST SCI, V12, P17
[2]   Finite-time tracking control of nth-order chained-form non-holonomic systems in the presence of disturbances [J].
Bayat, Farhad ;
Mobayen, Saleh ;
Javadi, Shamsi .
ISA TRANSACTIONS, 2016, 63 :78-83
[3]  
Brockett R.W, 1983, PROG MATH, P181
[4]   A nonlinear disturbance observer for robotic manipulators [J].
Chen, WH ;
Ballance, DJ ;
Gawthrop, PJ ;
O'Reilly, J .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2000, 47 (04) :932-938
[5]   Model Predictive Longitudinal Motion Control for the Unmanned Ground Vehicle With a Trajectory Tracking Model [J].
Dong, Haotian ;
Xi, Junqiang .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (02) :1397-1410
[6]   Model Predictive Adaptive Constraint Tracking Control for Underwater Vehicles [J].
Gan, Wenyang ;
Zhu, Daqi ;
Hu, Zhen ;
Shi, Xianpeng ;
Yang, Lei ;
Chen, Yunsai .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67 (09) :7829-7840
[7]   Adaptive Neural Impedance Control of a Robotic Manipulator With Input Saturation [J].
He, Wei ;
Dong, Yiting ;
Sun, Changyin .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2016, 46 (03) :334-344
[8]   Guidance, Navigation, and Control of AUVs for Permanent Underwater Optical Networks [J].
Immas, Alexandre ;
Alam, Mohammad-Reza .
IEEE JOURNAL OF OCEANIC ENGINEERING, 2023, 48 (01) :43-58
[9]   Adaptive Constrained Formation-Tracking Control for a Tractor-Trailer Mobile Robot Team With Multiple Constraints [J].
Jin, Xu ;
Dai, Shi-Lu ;
Liang, Jianjun .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (03) :1700-1707
[10]   Learning-Based Model Predictive Control for Autonomous Racing [J].
Kabzan, Juraj ;
Hewing, Lukas ;
Liniger, Alexander ;
Zeilinger, Melanie N. .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (04) :3363-3370