Gromov hyperbolicity of Johnson and Kneser graphs

被引:0
|
作者
Mendez, Jesus [1 ]
Reyes, Rosalio [2 ]
Rodriguez, Jose M. [3 ]
Sigarreta, Jose M. [4 ]
机构
[1] Univ Autonoma Guerrero, Fac Matemat, Campus Chilpancingo,Ciudad Univ,Ave Lazaro Carden, Chilpancigo 39087, Guerrero, Mexico
[2] Benemerita Univ Autonoma Puebla, Inst Fis Ing Luis Rivera Terrazas, Ave San Claudio,Cd Univ, Puebla 72570, Mexico
[3] Univ Carlos III Madrid, Dept Matemat, Ave Univ 30, Madrid 28911, Spain
[4] Univ Autonoma Guerrero, Fac Matemat, Campus Acapulco,Carlos E Adame 54 Col Garita, Acapulco 39650, Gro, Mexico
关键词
Johnson graphs; Kneser graphs; Gromov hyperbolicity; Geodesics; DECOMPOSITION;
D O I
10.1007/s00010-024-01076-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The concept of Gromov hyperbolicity is a geometric concept that leads to a rich general theory. Johnson and Kneser graphs are interesting combinatorial graphs defined from systems of sets. In this work we compute the precise value of the hyperbolicity constant of every Johnson graph. Also, we obtain good bounds on the hyperbolicity constant of every Kneser graph, and in many cases, we even compute its precise value.
引用
收藏
页码:661 / 686
页数:26
相关论文
共 50 条
  • [41] Hyperbolicity and parameters of graphs
    Michel, Junior
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    Villeta, Maria
    ARS COMBINATORIA, 2011, 100 : 43 - 63
  • [42] Gromov hyperbolicity through decomposition of metrics spaces II
    Portilla, A
    Rodríguez, JM
    Tourís, E
    JOURNAL OF GEOMETRIC ANALYSIS, 2004, 14 (01) : 123 - 149
  • [43] Hyperbolicity in median graphs
    JOSÉ M SIGARRETA
    Proceedings - Mathematical Sciences, 2013, 123 : 455 - 467
  • [44] Gromov hyperbolicity and convex tessellation graph
    Carballosa, W.
    ACTA MATHEMATICA HUNGARICA, 2017, 151 (01) : 24 - 34
  • [45] Gromov hyperbolicity and convex tessellation graph
    W. Carballosa
    Acta Mathematica Hungarica, 2017, 151 : 24 - 34
  • [46] Twists and Gromov Hyperbolicity of Riemann Surfaces
    Matsuzaki, Katsuhiko
    Rodriguez, Jose M.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (01) : 29 - 44
  • [47] On the Gromov Hyperbolicity of Convex Domains in Cn
    Gaussier, Herve
    Seshadri, Harish
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2018, 18 (04) : 617 - 641
  • [48] Apollonian metric, uniformity and Gromov hyperbolicity
    Li, Yaxiang
    Vuorinen, Matti
    Zhou, Qingshan
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (02) : 215 - 228
  • [49] Average Gromov hyperbolicity and the Parisi ansatz
    Chatterjee, Sourav
    Sloman, Leila
    ADVANCES IN MATHEMATICS, 2021, 376
  • [50] Twists and Gromov hyperbolicity of riemann surfaces
    Katsuhiko Matsuzaki
    José M. Rodríguez
    Acta Mathematica Sinica, English Series, 2011, 27 : 29 - 44