Design optimization and numerical investigation of multi tube metal hydride reactor for large capacity hydrogen storage application

被引:9
|
作者
Parashar, Shubham [1 ]
Muthukumar, P. [2 ]
Soti, Atul Kumar [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Mech Engn, Gauhati 781039, Assam, India
[2] Indian Inst Technol Tirupati, Dept Mech Engn, Tirupati 517619, Andhra Prades, India
关键词
Large capacity hydrogen storage; Novel reactor design; Metal hydride; LaNi; 5; HEAT-TRANSFER; MASS-TRANSFER; SENSITIVITY-ANALYSIS; DEVICE; PERFORMANCE; SIMULATION; TANKS; GRAPHITE; SYSTEM; ENERGY;
D O I
10.1016/j.tsep.2024.102468
中图分类号
O414.1 [热力学];
学科分类号
摘要
The efficient operation of a metal hydride based hydrogen storage system primarily depends on the configuration of the storage reactor. Both the total weight and effective performance are crucial for large capacity hydrogen storage systems. Therefore, the present work is centered around the development of a lightweight, compact, and efficient MH reactor capable of accommodating a large hydrogen inventory. In this perspective, a disc finned multi tube reactor (DFMTR) design is proposed, and its behaviour is numerically analyzed. Five reactor configurations are studied using 3D COMSOL modeling to visualize the impact of various fin structures during the absorption and desorption half cycles. The DFMTR model shows remarkably higher performance by saving 38% and 31% time to store and release hydrogen compared to the baseline reactor. Further, the design methodology is discussed, and the geometrical and operational parameters are optimized to achieve the excellent performance of the proposed reactor. Furthermore, the portable design approach for scaling up the capacity of the storage system is discussed and recommended. Moreover, the proposed reactor design is compared with recent studies of the literature, and found that this reactor saved 22.1%, 50%, 52.1%, and 8.7% of time to store 90% hydrogen compared with tapered finned multi tube reactor, tube bundle reactor, radial finned reactor, and pin fin reactor, respectively. The authors believe that the proposed large capacity reactor has the potential to deliver outstanding performance, and this research will be instrumental in the construction of compact, effective metal hydride reactors with significant hydrogen storage capacities.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Design and optimization of metal hydride reactor with phase change material using fin factor for hydrogen storage
    Shrivastav, Ankush Parmanand
    Kanti, Praveen Kumar
    Mohan, G.
    Maiya, M. P.
    JOURNAL OF ENERGY STORAGE, 2024, 77
  • [22] Design optimization and sensitivity analysis of the radiation mini-channel metal hydride reactor
    Wang, Di
    Wang, Yuqi
    Huang, Zhuonan
    Yang, Fusheng
    Wu, Zhen
    Zheng, Lan
    Wu, Le
    Zhang, Zaoxiao
    ENERGY, 2019, 173 : 443 - 456
  • [23] Optimization of hydrogen storage in metal-hydride tanks
    Askri, F.
    Salah, M. Ben
    Jemni, A.
    Ben Nasrallah, S.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (02) : 897 - 905
  • [24] Numerical Simulation of Hydrogen Desorption Characteristics in Metal Hydride Reactor for Hydrogen Storage
    Bao Z.
    Zhu Z.
    Mou X.
    Yan D.
    Gongcheng Kexue Yu Jishu/Advanced Engineering Sciences, 2021, 53 (02): : 151 - 157
  • [25] An optimization study on the finned tube heat exchanger used in hydride hydrogen storage system - analytical method and numerical simulation
    Nyamsi, Serge Nyallang
    Yang, Fusheng
    Zhang, Zaoxiao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (21) : 16078 - 16092
  • [26] Experimental study on absorption and desorption behavior of a novel metal hydride reactor for stationary hydrogen storage applications
    Parashar, Shubham
    Muthukumar, P.
    Soti, Atul Kumar
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 94 : 1224 - 1235
  • [27] Enhancement of heat and mass transfer characteristics of metal hydride reactor for hydrogen storage using various nanofluids
    Urunkar, Rahul U.
    Patil, Sharad D.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (37) : 19486 - 19497
  • [28] Reactor design and numerical study on metal hydride based finned reactor configurations for hydrogen compression application
    Parida, Abhishek
    Muthukumar, P.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (96) : 37930 - 37943
  • [29] Strategic integration of metamaterials properties and topology optimization of gyroid metal hydride reactor for high-density hydrogen storage
    Lesmana, Luthfan Adhy
    Aziz, Muhammad
    ENERGY, 2024, 308
  • [30] Optimization of tree-shaped fin structures towards enhanced absorption performance of metal hydride hydrogen storage device: A numerical study
    Bai, Xiao-Shuai
    Yang, Wei-Wei
    Tang, Xin-Yuan
    Yang, Fu-Sheng
    Jiao, Yu-Hang
    Yang, Yu
    ENERGY, 2021, 220 (220)