Parameter Optimization of Foldable Flapping-Wing Mechanism for Maximum Lift

被引:9
作者
Yang, Hyeon-Ho [1 ]
Lee, Sang-Gil [1 ]
Addo-Akoto, Reynolds [1 ]
Han, Jae-Hung [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Aerosp Engn, Smart Struct & HW Syst Lab, Daejeon 34141, South Korea
来源
JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME | 2024年 / 16卷 / 03期
基金
新加坡国家研究基金会;
关键词
flapping-wing air vehicle; foldable flapping-wing mechanism; flapping-wing kinematics; unsteady aerodynamics; bio-inspired design; mechanism design; theoretical kinematics; VORTEX-LATTICE METHOD; MICRO AIR VEHICLE; FLIGHT; DESIGN; KINEMATICS; HOVER;
D O I
10.1115/1.4056869
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A lot of flapping-wing mechanisms have been proposed to mimic the flight characteristics of biological flyers. However, it is difficult to find studies that consider the unsteady aerodynamics in the design of the flapping-wing mechanisms. This paper presents a systematic approach to optimize the design parameters of a foldable flapping-wing mechanism (FFWM) with a proper aerodynamics model. For the kinematic model, the eight design parameters are defined to determine the reference configuration of the FFWM. The geometrical constraints of each design parameter are derived, and the kinematic analysis is conducted using the plane vector analysis method. The aerodynamic simulation using an unsteady vortex lattice method is performed to compute the aerodynamic loads induced by the flapping motion. An optimization problem is formulated to search for the optimal design parameters that maximize the average lift force considering the required power corresponding to the aerodynamic torques. The parameter optimization problem is solved for three different length ratios of the outer wing to the inner wing using a genetic algorithm. The optimization results show that increasing the outer wing length can cause a significant loss in the required power. The optimal design parameters found by the proposed approach allow the FFWM to generate maximum lift force with appropriate consideration of the required power.
引用
收藏
页数:12
相关论文
共 49 条
[1]   Span morphing using the GNATSpar wing [J].
Ajaj, R. M. ;
Friswell, M. I. ;
Bourchak, M. ;
Harasani, W. .
AEROSPACE SCIENCE AND TECHNOLOGY, 2016, 53 :38-46
[2]   A Neural-network-based Approach to Study the Energy-optimal Hovering Wing Kinematics of a Bionic Hawkmoth Model [J].
Anh Tuan Nguyen ;
Ngoc Doan Tran ;
Thanh Trung Vu ;
Thanh Dong Pham ;
Quoc Tru Vu ;
Han, Jae-Hung .
JOURNAL OF BIONIC ENGINEERING, 2019, 16 (05) :904-915
[3]   Extended Unsteady Vortex-Lattice Method for Insect Flapping Wings [J].
Anh Tuan Nguyen ;
Kim, Joong-Kwan ;
Han, Jong-Seob ;
Han, Jae-Hung .
JOURNAL OF AIRCRAFT, 2016, 53 (06) :1709-1718
[4]   Non-linear unsteady aerodynamic model for insect-like flapping wings in the hover. Part 2: implementation and validation [J].
Ansari, S. A. ;
Zbikowski, R. ;
Knowles, K. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2006, 220 (G3) :169-186
[5]   A Review of Morphing Aircraft [J].
Barbarino, Silvestro ;
Bilgen, Onur ;
Ajaj, Rafic M. ;
Friswell, Michael I. ;
Inman, Daniel J. .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2011, 22 (09) :823-877
[6]   Development of an SMA-based camber morphing UAV tail core design [J].
Bishay, Peter L. ;
Finden, Ryan ;
Recinos, Shawn ;
Alas, Christian ;
Lopez, Erik ;
Aslanpour, Dvin ;
Flores, Douglas ;
Gonzalez, Efrain .
SMART MATERIALS AND STRUCTURES, 2019, 28 (07)
[7]  
Chase M.A., 1963, Trans. ASME, J. Engr. Industry, V85, P289, DOI DOI 10.1115/1.3669867
[8]   Design and control of tensegrity morphing airfoils [J].
Chen, Muhao ;
Liu, Jiacheng ;
Skelton, Robert E. .
MECHANICS RESEARCH COMMUNICATIONS, 2020, 103
[9]   Robird A Robotic Bird of Prey [J].
Folkertsma, Gerrit Adriaan ;
Straatman, Wessel ;
Nijenhuis, Nico ;
Venner, Cornelis Henricus ;
Stramigioli, Stefano .
IEEE ROBOTICS & AUTOMATION MAGAZINE, 2017, 24 (03) :22-29
[10]   Robo Raven: A Flapping-Wing Air Vehicle with Highly Compliant and Independently Controlled Wings [J].
Gerdes, John ;
Holness, Alex ;
Perez-Rosado, Ariel ;
Roberts, Luke ;
Greisinger, Adrian ;
Barnett, Eli ;
Kempny, Johannes ;
Lingam, Deepak ;
Yeh, Chen-Haur ;
Bruck, Hugh A. ;
Gupta, Satyandra K. .
SOFT ROBOTICS, 2014, 1 (04) :275-288