Assessment of atherosclerotic plaque burden: comparison of AI-QCT versus SIS, CAC, visual and CAD-RADS stenosis categories

被引:6
作者
Khan, Hufsa [1 ]
Bansal, Kopal [1 ]
Griffin, William F. [2 ,3 ]
Cantlay, Catherine [1 ]
Sidahmed, Alfateh [1 ]
Nurmohamed, Nick S. [1 ]
Zeman, Robert K. [2 ]
Katz, Richard J. [1 ]
Blankstein, Ron [4 ,5 ]
Earls, James P. [2 ,6 ]
Choi, Andrew D. [1 ,2 ]
机构
[1] George Washington Univ, Sch Med, Div Cardiol, Washington, DC 20052 USA
[2] George Washington Univ, Sch Med, Dept Radiol, Washington, DC 20052 USA
[3] Univ N Carolina, Dept Radiol, Chapel Hill, NC USA
[4] Brigham & Womens Hosp, Cardiovasc Div, Boston, MA USA
[5] Brigham & Womens Hosp, Dept Radiol, Boston, MA USA
[6] Cleerly Healthcare, Denver, CO USA
关键词
CCTA; AI; Atherosclerosis; SIS; CACS; CAD-RADS; Plaque burden; CARDIOVASCULAR COMPUTED-TOMOGRAPHY; CORONARY-ARTERY-DISEASE; NORTH-AMERICAN SOCIETY; PROGNOSTIC VALUE; SCCT GUIDELINES; ANGIOGRAPHY;
D O I
10.1007/s10554-024-03087-x
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
This study assesses the agreement of Artificial Intelligence-Quantitative Computed Tomography (AI-QCT) with qualitative approaches to atherosclerotic disease burden codified in the multisociety 2022 CAD-RADS 2.0 Expert Consensus. 105 patients who underwent cardiac computed tomography angiography (CCTA) for chest pain were evaluated by a blinded core laboratory through FDA-cleared software (Cleerly, Denver, CO) that performs AI-QCT through artificial intelligence, analyzing factors such as % stenosis, plaque volume, and plaque composition. AI-QCT plaque volume was then staged by recently validated prognostic thresholds, and compared with CAD-RADS 2.0 clinical methods of plaque evaluation (segment involvement score (SIS), coronary artery calcium score (CACS), visual assessment, and CAD-RADS percent (%) stenosis) by expert consensus blinded to the AI-QCT core lab reads. Average age of subjects were 59 +/- 11 years; 44% women, with 50% of patients at CAD-RADS 1-2 and 21% at CAD-RADS 3 and above by expert consensus. AI-QCT quantitative plaque burden staging had excellent agreement of 93% (k = 0.87 95% CI: 0.79-0.96) with SIS. There was moderate agreement between AI-QCT quantitative plaque volume and categories of visual assessment (64.4%; k = 0.488 [0.38-0.60]), and CACS (66.3%; k = 0.488 [0.36-0.61]). Agreement between AI-QCT plaque volume stage and CAD-RADS % stenosis category was also moderate. There was discordance at small plaque volumes. With ongoing validation, these results demonstrate a potential for AI-QCT as a rapid, reproducible approach to quantify total plaque burden.
引用
收藏
页码:1201 / 1209
页数:9
相关论文
共 24 条
[1]   SCCT guidelines for the performance and acquisition of coronary computed tomographic angiography: A report of the society of Cardiovascular Computed Tomography Guidelines Committee Endorsed by the North American Society for Cardiovascular Imaging (NASCI) [J].
Abbara, Suhny ;
Blanke, Philipp ;
Maroules, Christopher D. ;
Cheezum, Michael ;
Choi, Andrew D. ;
Han, B. Kelly ;
Marwan, Mohamed ;
Naoum, Chris ;
Norgaard, Bjarne L. ;
Rubinshtein, Ronen ;
Schoenhagen, Paul ;
Villines, Todd ;
Leipsic, Jonathon .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2016, 10 (06) :435-449
[2]   Prognostic Value of Nonobstructive and Obstructive Coronary Artery Disease Detected by Coronary Computed Tomography Angiography to Identify Cardiovascular Events [J].
Bittencourt, Marcio Sommer ;
Hulten, Edward ;
Ghoshhajra, Brian ;
O'Leary, Daniel ;
Christman, Mitalee P. ;
Montana, Philip ;
Truong, Quynh A. ;
Steigner, Michael ;
Murthy, Venkatesh L. ;
Rybicki, Frank J. ;
Nasir, Khurram ;
Gowdak, Luis Henrique W. ;
Hainer, Jon ;
Brady, Thomas J. ;
Di Carli, Marcelo F. ;
Hoffmann, Udo ;
Abbara, Suhny ;
Blankstein, Ron .
CIRCULATION-CARDIOVASCULAR IMAGING, 2014, 7 (02) :282-291
[3]   CT Evaluation by Artificial Intelligence for Atherosclerosis, Stenosis and Vascular Morphology (CLARIFY): A Multi-center, international study [J].
Choi, Andrew D. ;
Marques, Hugo ;
Kumar, Vishak ;
Griffin, William F. ;
Rahban, Habib ;
Karlsberg, Ronald P. ;
Zeman, Robert K. ;
Katz, Richard J. ;
Earls, James P. .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2021, 15 (06) :470-476
[4]   2020 SCCT Guideline for Training Cardiology and Radiology Trainees as Independent Practitioners (Level II) and Advanced Practitioners (Level III) in Cardiovascular Computed Tomography: A Statement from the Society of Cardiovascular Computed Tomography [J].
Choi, Andrew D. ;
Thomas, Dustin M. ;
Lee, James ;
Abbara, Suhny ;
Cury, Ricardo C. ;
Leipsic, Jonathon A. ;
Maroules, Christopher ;
Nagpal, Prashant ;
Steigner, Michael L. ;
Wang, Dee Dee ;
Williams, Michelle C. ;
Zeb, Irfan ;
Villines, Todd C. ;
Blankstein, Ron .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2021, 15 (01) :2-15
[5]  
CURY RC, 2022, J CARDIOVASC COMPUT, V16, P536, DOI DOI 10.1016/J.JCCT.2022.07.002
[6]   CAD-RADSTM 2.0-2022 Coronary Artery Disease-Reporting and Data System [J].
Cury, Ricardo C. ;
Leipsic, Jonathon ;
Abbara, Suhny ;
Achenbach, Stephan ;
Berman, Daniel ;
Bittencourt, Marcio ;
Budoff, Matthew ;
Chinnaiyan, Kavitha ;
Choi, Andrew D. ;
Ghoshhajra, Brian ;
Jacobs, Jill ;
Koweek, Lynne ;
Lesser, John ;
Maroules, Christopher ;
Rubin, Geoffrey D. ;
Rybicki, Frank J. ;
Shaw, Leslee J. ;
Williams, Michelle C. ;
Williamson, Eric ;
White, Charles S. ;
Villines, Todd C. ;
Blankstein, Ron .
JACC-CARDIOVASCULAR IMAGING, 2022, 15 (11) :1974-2001
[7]   Non-obstructive high-risk plaques increase the risk of future culprit lesions comparable to obstructive plaques without high-risk features: the ICONIC study [J].
Ferraro, Richard A. ;
van Rosendael, Alexander R. ;
Lu, Yao ;
Andreini, Daniele ;
Al-Mallah, Mouaz H. ;
Cademartiri, Filippo ;
Chinnaiyan, Kavitha ;
Chow, Benjamin J. W. ;
Conte, Edoardo ;
Cury, Ricardo C. ;
Feuchtner, Gudrun ;
Goncalves, Pedro de Araujo ;
Hadamitzky, Martin ;
Kim, Yong-jin ;
Leipsic, Jonathon ;
Maffei, Erica ;
Marques, Hugo ;
Plank, Fabian ;
Pontone, Gianluca ;
Raff, Gilbert L. ;
Villines, Todd C. ;
Lee, Sang-Eun ;
Al'Aref, Subhi J. ;
Baskaran, Lohendran ;
Cho, Iksung ;
Danad, Ibrahim ;
Gransar, Heidi ;
Budoff, Matthew J. ;
Samady, Habib ;
Stone, Peter H. ;
Virmani, Renu ;
Narula, Jagat ;
Berman, Daniel S. ;
Chang, Hyuk-Jae ;
Bax, Jeroen J. ;
Min, James K. ;
Shaw, Leslee J. ;
Lin, Fay Y. .
EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2020, 21 (09) :973-980
[8]   AI Evaluation of Stenosis on Coronary CTA, Comparison With Quantitative Coronary Angiography and Fractional Flow Reserve A CREDENCE Trial Substudy [J].
Griffin, William F. ;
Choi, Andrew D. ;
Riess, Joanna S. ;
Marques, Hugo ;
Chang, Hyuk-Jae ;
Choi, Jung Hyun ;
Doh, Joon-Hyung ;
Her, Ae-Young ;
Koo, Bon-Kwon ;
Nam, Chang-Wook ;
Park, Hyung-Bok ;
Shin, Sang-Hoon ;
Cole, Jason ;
Gimelli, Alessia ;
Khan, Muhammad Akram ;
Lu, Bin ;
Gao, Yang ;
Nabi, Faisal ;
Nakazato, Ryo ;
Schoepf, U. Joseph ;
Driessen, Roel S. ;
Bom, Michiel J. ;
Thompson, Randall ;
Jang, James J. ;
Ridner, Michael ;
Rowan, Chris ;
Avelar, Erick ;
Genereux, Philippe ;
Knaapen, Paul ;
de Waard, Guus A. ;
Pontone, Gianluca ;
Andreini, Daniele ;
Earls, James P. .
JACC-CARDIOVASCULAR IMAGING, 2023, 16 (02) :193-205
[9]   Prognostic Implications of Coronary CT Angiography: 2-Year Follow-Up of 6892 Patients [J].
Johnson, Kevin M. ;
Dowe, David A. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2020, 215 (04) :818-827
[10]   Guidelines for Reporting Reliability and Agreement Studies (GRRAS) were proposed [J].
Kottner, Jan ;
Audige, Laurent ;
Brorson, Stig ;
Donner, Allan ;
Gajewski, Byron J. ;
Hrobjartsson, Asbjorn ;
Roberts, Chris ;
Shoukri, Mohamed ;
Streiner, David L. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2011, 64 (01) :96-106