Experimental recognition of vortex beams in oceanic turbulence combining the Gerchberg-Saxton algorithm and convolutional neural network

被引:2
作者
Fan, Wen-Qi [1 ]
Gao, Feng-Lin [1 ]
Xue, Fu-Chan [1 ]
Guo, Jing-Jing [1 ]
Xiao, Ya [1 ]
Gu, Yong-Jian [1 ]
机构
[1] Ocean Univ China, Coll Phys & Optoelect Engn, Qingdao 266100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
ORBITAL ANGULAR-MOMENTUM; OPTICAL COMMUNICATION; PHASE; COMPENSATION; PROBE; PLANE; LASER; CNN;
D O I
10.1364/AO.509527
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In underwater wireless optical communication (UWOC), vortex beams carrying orbital angular momentum (OAM) can improve channel capacity but are vulnerable to oceanic turbulence (OT), leading to recognition errors. To mitigate this issue, we propose what we believe to be a novel method that combines the Gerchberg-Saxton (GS) algorithm-based recovery with convolutional neural network (CNN)-based recognition (GS-CNN). Our experimental results demonstrate that superposed Laguerre-Gaussian (LG) beams with small topological charge are ideal information carriers, and the GS-CNN remains effective even when OT strength C2n is high up to 10-11 K2m-2/3. Furthermore, we use 16 kinds of LG beams to transmit a 256-grayscale digital image, giving rise to an increase in recognition accuracy from 0.75 to 0.93 and a decrease in bit error ratio from 3.98 x 10-2 to 6.52 x 10-3 compared to using the CNN alone. (c) 2024 Optica Publishing Group
引用
收藏
页码:982 / 989
页数:8
相关论文
共 45 条
  • [1] Akyildiz I. F., 2004, SIGBED REV, V1, P3, DOI DOI 10.1145/1121776.1121779
  • [2] ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES
    ALLEN, L
    BEIJERSBERGEN, MW
    SPREEUW, RJC
    WOERDMAN, JP
    [J]. PHYSICAL REVIEW A, 1992, 45 (11): : 8185 - 8189
  • [3] Andrews L. C., 2001, LASER BEAM SCINTILLA
  • [4] Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing
    Baghdady, Joshua
    Miller, Keith
    Morgan, Kaitlyn
    Osler, Matthew Byrd Sean
    Ragusa, Robert
    Li, Wenzhe
    Cochenour, Brandon M.
    Johnson, Eric G.
    [J]. OPTICS EXPRESS, 2016, 24 (09): : 9794 - 9805
  • [5] Spatial Mode Correction of Single Photons Using Machine Learning
    Bhusal, Narayan
    Lohani, Sanjaya
    You, Chenglong
    Hong, Mingyuan
    Fabre, Joshua
    Zhao, Pengcheng
    Knutson, Erin M.
    Glasser, Ryan T.
    Magana-Loaiza, Omar S.
    [J]. ADVANCED QUANTUM TECHNOLOGIES, 2021, 4 (03)
  • [6] Exact solution to simultaneous intensity and phase encryption with a single phase-only hologram
    Bolduc, Eliot
    Bent, Nicolas
    Santamato, Enrico
    Karimi, Ebrahim
    Boyd, Robert W.
    [J]. OPTICS LETTERS, 2013, 38 (18) : 3546 - 3549
  • [7] GEOMETRICAL AND STATISTICAL PROPERTIES OF SYSTEMS OF LINEAR INEQUALITIES WITH APPLICATIONS IN PATTERN RECOGNITION
    COVER, TM
    [J]. IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS, 1965, EC14 (03): : 326 - &
  • [8] OAM mode recognition based on joint scheme of combining the Gerchberg-Saxton (GS) algorithm and convolutional neural network (CNN)
    Dedo, Maxime Irene
    Wang, Zikun
    Guo, Kai
    Guo, Zhongyi
    [J]. OPTICS COMMUNICATIONS, 2020, 456 (456)
  • [9] Retrieving Performances of Vortex Beams with GS Algorithm after Transmitting in Different Types of Turbulences
    Dedo, Maxime Irene
    Wang, Zikun
    Guo, Kai
    Sun, Yongxuan
    Shen, Fei
    Zhou, Hongping
    Gao, Jun
    Sun, Rui
    Ding, Zhizhong
    Guo, Zhongyi
    [J]. APPLIED SCIENCES-BASEL, 2019, 9 (11):
  • [10] Machine learning approach to OAM beam demultiplexing via convolutional neural networks
    Doster, Timothy
    Watnik, Abbie T.
    [J]. APPLIED OPTICS, 2017, 56 (12) : 3386 - 3396