Soil organic carbon sequestration rate and spatiotemporal dynamics under perennial energy crops cultivation: A global meta-analysis

被引:3
|
作者
Wu, Yini [2 ]
Huang, Huarong [1 ]
Chen, Feng [3 ]
Tan, Tiansu [2 ]
Xu, Yi [1 ]
机构
[1] China Agr Univ, Coll Agron & Biotechnol, Beijing, Peoples R China
[2] Hunan Agr Univ, Coll Biosci & Biotechnol, Changsha, Peoples R China
[3] Anhui Agr Univ, Coll Hort, Hefei, Peoples R China
来源
SOIL & TILLAGE RESEARCH | 2024年 / 240卷
关键词
Miscanthus; Switchgrass; Short rotation coppice; Spatiotemporal dynamics; Bioenergy; MISCANTHUS; LAND;
D O I
10.1016/j.still.2024.106064
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Cultivating perennial energy crops (PECs) not only enhances soil organic carbon (SOC) sequestration but also provides a reliable feedstock for bioenergy production. Nevertheless, the lack of exploration of the SOC sequestration rate and its spatiotemporal dynamics at a global scale hinders the industrial-scale implementation of PECs cultivation. In this study, we conducted a comprehensive global meta-analysis to quantify the SOC sequestration rate and elucidate its spatiotemporal dynamics. The results showed that PECs cultivation globally achieves a SOC sequestration rate of 0.21 Mg ha (-1) yr (-1). The crop age and soil depth were identified as the most important driving factors of the SOC sequestration rate. The SOC sequestration rate of PECs cultivation initially increased with crop age but eventually declined, reaching its peak at 9 years. Notably, the SOC sequestration rate was higher in deeper soil layers, particularly within 30-60 cm, compared to the topsoils (0-30 cm). Our results provide compelling evidence that PECs have promising potential for enhancing SOC sequestration, particularly in deep soils over the long term. These results contribute to the formulation of relevant policies aimed at effectively deploying PECs to facilitate the transition to renewable energy sources and achieve carbon neutrality.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Drivers of soil organic carbon recovery under forest restoration: a global meta-analysis
    Xu, Shan
    Eisenhauer, Nico
    Zeng, Zhenzhong
    Mo, Xiaohan
    Ding, Yan
    Lai, Derrick Y. F.
    Wang, Junjian
    Carbon Research, 2024, 3 (01):
  • [22] Meta analysis of the effects of global organic material returning on soil organic carbon sequestration in Mollisols
    Pei H.
    Miao Y.
    Hou R.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2023, 39 (16): : 79 - 88
  • [23] Deep tillage enhanced soil organic carbon sequestration in China: A meta-analysis
    Zhao, Shicheng
    He, Ping
    Wang, Xiya
    Xu, Xinpeng
    Qiu, Shaojun
    JOURNAL OF CLEANER PRODUCTION, 2023, 399
  • [24] Factors affecting soil organic carbon sequestration in rice fields: A meta-analysis
    Hu, Xinyue
    Qin, Jihong
    Ma, Feiwen
    Sun, Hui
    Tang, Yujia
    SOIL USE AND MANAGEMENT, 2025, 41 (01)
  • [25] Synergistic improvement of carbon sequestration and crop yield by organic material addition in saline soil: A global meta-analysis
    Li, Siping
    Zhao, Lei
    Wang, Chong
    Huang, Huiying
    Zhuang, Minghao
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 891
  • [26] Crop yield and soil organic carbon under ridge-furrow cultivation in China: A meta-analysis
    Wang, Yunqi
    Gao, Fuli
    Wang, Lixin
    Guo, Tongji
    Qi, Liuran
    Zeng, Huanyu
    Liang, Yuexin
    Zhang, Kai
    Jia, Zhikuan
    Zhang, Rui
    LAND DEGRADATION & DEVELOPMENT, 2021, 32 (10) : 2978 - 2991
  • [27] Effects of Residue Returning on Soil Organic Carbon Storage and Sequestration Rate in China's Croplands: A Meta-Analysis
    Wang, Xudong
    He, Cong
    Liu, Bingyang
    Zhao, Xin
    Liu, Yang
    Wang, Qi
    Zhang, Hailin
    AGRONOMY-BASEL, 2020, 10 (05):
  • [28] Marginal land conversion to perennial energy crops with biomass removal enhances soil carbon sequestration
    Xu, Yi
    Zhou, Jie
    Feng, Wenhao
    Jia, Rong
    Liu, Chunyan
    Fu, Tongchen
    Xue, Shuai
    Yi, Zili
    Guillaume, Thomas
    Yang, Yadong
    Peixoto, Leanne
    Zeng, Zhaohai
    Zang, Huadong
    GLOBAL CHANGE BIOLOGY BIOENERGY, 2022, 14 (10): : 1117 - 1127
  • [29] Spatiotemporal variability of fire effects on soil carbon and nitrogen: A global meta-analysis
    Li, Jinquan
    Pei, Junmin
    Liu, Jiajia
    Wu, Jihua
    Li, Bo
    Fang, Changming
    Nie, Ming
    GLOBAL CHANGE BIOLOGY, 2021, 27 (17) : 4196 - 4206
  • [30] Soil carbon sequestration in agroforestry systems: a meta-analysis
    De Stefano, Andrea
    Jacobson, Michael G.
    AGROFORESTRY SYSTEMS, 2018, 92 (02) : 285 - 299