Compact realization of all-attosecond pump-probe spectroscopy

被引:14
|
作者
Kretschmar, Martin [1 ]
Svirplys, Evaldas [1 ]
Volkov, Mikhail [1 ]
Witting, Tobias [1 ]
Nagy, Tamas [1 ]
Vrakking, Marc J. J. [1 ]
Schuette, Bernd [1 ]
机构
[1] Max Born Inst, Max Born Str 2A, D-12489 Berlin, Germany
关键词
REAL-TIME OBSERVATION; PULSES; DYNAMICS;
D O I
10.1126/sciadv.adk9605
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ability to perform attosecond-pump attosecond-probe spectroscopy (APAPS) is a longstanding goal in ultrafast science. While first pioneering experiments demonstrated the feasibility of APAPS, the low repetition rates (10 to 120 Hz) and the large footprints of existing setups have so far hindered the widespread exploitation of APAPS. Here, we demonstrate two-color APAPS using a commercial laser system at 1 kHz, straightforward post-compression in a hollow-core fiber, and a compact high-harmonic generation (HHG) setup. The latter enables the generation of intense extreme-ultraviolet (XUV) pulses by using an out-of-focus HHG geometry and by exploiting a transient blueshift of the driving laser in the HHG medium. Near-isolated attosecond pulses are generated, as demonstrated by one-color and two-color XUV-pump XUV-probe experiments. Our concept allows selective pumping and probing on extremely short timescales in many laboratories and permits investigations of fundamental processes that are not accessible by other pump-probe techniques.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Fluorescence-Detected Pump-Probe Spectroscopy
    Maly, Pavel
    Brixner, Tobias
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (34) : 18867 - 18875
  • [22] Femtosecond pump-probe spectroscopy on MoSI nanowires
    Gadermaier, Christoph
    Kusar, Primoz
    Vengust, Damjan
    Mihailovic, Dragan
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2008, 245 (10): : 2098 - 2101
  • [23] MULTIPLE MODULATION FOR OPTICAL PUMP-PROBE SPECTROSCOPY
    BADO, P
    WILSON, SB
    WILSON, KR
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1982, 53 (05): : 706 - 707
  • [24] Ground-state pump-probe spectroscopy
    A. I. Parkhomenko
    A. M. Shalagin
    Journal of Experimental and Theoretical Physics, 2007, 105 : 1095 - 1106
  • [25] Pump-Probe Spectroscopy Using the Hadamard Transform
    Beddard, Godfrey S.
    Yorke, Briony A.
    APPLIED SPECTROSCOPY, 2016, 70 (08) : 1292 - 1299
  • [26] Ground-state pump-probe spectroscopy
    Parkhomenko, A. I.
    Shalagin, A. M.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2007, 105 (06) : 1095 - 1106
  • [27] Modelling the pump-probe spectroscopy of opsin mimics
    Demoulin, Baptiste
    Cerullo, Giulio
    Rivalta, Ivan
    Garavelli, Marco
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [28] Pump-probe nonlinear phase dispersion spectroscopy
    Robles, Francisco E.
    Samineni, Prathyush
    Wilson, Jesse W.
    Warren, Warren S.
    OPTICS EXPRESS, 2013, 21 (08): : 9353 - 9364
  • [29] Pump-probe spectroscopy of chiral vibrational dynamics
    Tikhonov, Denis S.
    Blech, Alexander
    Leibscher, Monika
    Greenman, Loren
    Schnell, Melanie
    Koch, Christiane P.
    SCIENCE ADVANCES, 2022, 8 (49)
  • [30] Holography and thermalization in optical pump-probe spectroscopy
    Bagrov, A.
    Craps, B.
    Galli, F.
    Keranen, V.
    Keski-Vakkuri, E.
    Zaanen, J.
    PHYSICAL REVIEW D, 2018, 97 (08)