Thinness and its variations on some graph families and coloring graphs of bounded thinness

被引:0
作者
Bonomo-Braberman, Flavia [1 ,2 ]
Brandwein, Eric [1 ,2 ]
Oliveira, Fabiano S. [3 ]
Sampaio, Moyses S. [4 ]
Sansone, Agustin [1 ,2 ]
Szwarcfiter, Jayme L. [3 ,4 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Comp, Buenos Aires, Argentina
[2] Univ Buenos Aires, CONICET, Inst Invest Ciencias Comp ICC, Buenos Aires, Argentina
[3] Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil
[4] Univ Fed Rio de Janeiro, Rio de Janeiro, Brazil
关键词
(proper) k-thin graphs; cographs; crown graphs; grid graphs; graph coloring;
D O I
10.1051/ro/2024033
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Interval graphs and proper interval graphs are well known graph classes, for which several generalizations have been proposed in the literature. In this work, we study the (proper) thinness, and several variations, for the classes of cographs, crowns graphs and grid graphs. We provide the exact values for several variants of thinness (proper, independent, complete, precedence, and combinations of them) for the crown graphs CRn. For cographs, we prove that the precedence thinness can be determined in polynomial time. We also improve known bounds for the thinness of n x n grids GRn and mxn grids GRm,n, proving that n-1/3 left ceiling n-13 right ceiling $\textstyle\lceil\frac{n-1}3\rceil$ <= thin(GRn) <= n+1/2 left ceiling n+12 right ceiling $\textstyle\lceil\frac{n+1}2\rceil$. Regarding the precedence thinness, we prove that prec-thin(GRn,2) = n+1/2 left ceiling n+12 right ceiling $\textstyle\lceil\frac{n+1}2\rceil$ and that n- 1 + 3/2 left ceiling n-13 right ceiling left ceiling n-12 right ceiling +1$\textstyle{\lceil\frac{n-1}3\rceil}{\lceil\frac{n-1}2\rceil}+1$ <= prec-thin(GRn) <= n- 1 2 left ceiling n-12 right ceiling 2+1$\textstyle{\lceil\frac{n-1}2\rceil}<^>2+1$. As applications, we show that the k-coloring problem is NP-complete for precedence 2-thin graphs and for proper 2-thin graphs, when k is part of the input. On the positive side, it is polynomially solvable for precedence proper 2-thin graphs, given the order and partition.
引用
收藏
页码:1681 / 1702
页数:22
相关论文
共 18 条
[1]   On the thinness and proper thinness of a graph [J].
Bonomo, Flavia ;
de Estrada, Diego .
DISCRETE APPLIED MATHEMATICS, 2019, 261 :78-92
[2]   On coloring problems with local constraints [J].
Bonomo, Flavia ;
Faenza, Yuri ;
Oriolo, Gianpaolo .
DISCRETE MATHEMATICS, 2012, 312 (12-13) :2027-2039
[3]   Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problem [J].
Bonomo, Flavia ;
Mattia, Sara ;
Oriolo, Gianpaolo .
THEORETICAL COMPUTER SCIENCE, 2011, 412 (45) :6261-6268
[4]   Solving problems on generalized convex graphs via mim-width [J].
Bonomo-Braberman, Flavia ;
Brettell, Nick ;
Munaro, Andrea ;
Paulusma, Daniel .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2024, 140
[5]   Intersection models and forbidden pattern characterizations for 2-thin and proper 2-thin graphs [J].
Bonomo-Braberman, Flavia ;
Brito, Gaston Abel .
DISCRETE APPLIED MATHEMATICS, 2023, 339 :53-77
[6]   Thinness of product graphs [J].
Bonomo-Braberman, Flavia ;
Gonzalez, Carolina L. ;
Oliveira, Fabiano S. ;
Sampaio Jr, Moyses S. ;
Szwarcfiter, Jayme L. .
DISCRETE APPLIED MATHEMATICS, 2022, 312 :52-71
[7]   Precedence thinness in graphs [J].
Bonomo-Braberman, Flavia ;
Oliveira, Fabiano S. ;
Sampaio Jr, Moyses S. ;
Szwarcfiter, Jayme L. .
DISCRETE APPLIED MATHEMATICS, 2022, 323 :76-95
[8]   TESTING FOR CONSECUTIVE ONES PROPERTY, INTERVAL GRAPHS, AND GRAPH PLANARITY USING PQ-TREE ALGORITHMS [J].
BOOTH, KS ;
LUEKER, GS .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1976, 13 (03) :335-379
[9]  
Brandwein E., 2022, On the thinness of trees and other graph classes
[10]   On H-Topological Intersection Graphs [J].
Chaplick, Steven ;
Topfer, Martin ;
Vobornik, Jan ;
Zeman, Peter .
ALGORITHMICA, 2021, 83 (11) :3281-3318