Empirical likelihood MLE for joint modeling right censored survival data with longitudinal covariates
被引:0
|
作者:
Ren, Jian-Jian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Dept Math, Stat Program, College Pk, MD 20742 USAUniv Maryland, Dept Math, Stat Program, College Pk, MD 20742 USA
Ren, Jian-Jian
[1
]
Shi, Yuyin
论文数: 0引用数: 0
h-index: 0
机构:
US FDA, Ctr Biol Evaluat & Res CBER, 10903 New Hampshire Ave, Silver Spring, MD 20993 USAUniv Maryland, Dept Math, Stat Program, College Pk, MD 20742 USA
Shi, Yuyin
[2
]
机构:
[1] Univ Maryland, Dept Math, Stat Program, College Pk, MD 20742 USA
[2] US FDA, Ctr Biol Evaluat & Res CBER, 10903 New Hampshire Ave, Silver Spring, MD 20993 USA
Empirical likelihood;
Intensive longitudinal data;
Maximum likelihood estimator;
Proportional hazards model;
Right censored data;
RATIO CONFIDENCE-INTERVALS;
SELF-CONSISTENT;
REGRESSION;
ESTIMATORS;
INFERENCE;
D O I:
10.1007/s10463-024-00899-5
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Up to now, almost all existing methods for joint modeling survival data and longitudinal data rely on parametric/semiparametric assumptions on longitudinal covariate process, and the resulting inferences critically depend on the validity of these assumptions that are difficult to verify in practice. The kernel method-based procedures rely on choices of kernel function and bandwidth, and none of the existing methods provides estimate for the baseline distribution in proportional hazards model. This article proposes a proportional hazards model for joint modeling right censored survival data and intensive longitudinal data taking into account of within-subject historic change patterns. Without any parametric/semiparametric assumptions or use of kernel method, we derive empirical likelihood-based maximum likelihood estimators and partial likelihood estimators for the regression parameter and the baseline distribution function. We develop stable computing algorithms and present some simulation results. Analyses of real dataset are conducted for smoking cessation data and liver disease data.
机构:
Dept.of Statistics and Finance,University of Science and Technology of ChinaDept.of Statistics and Finance,University of Science and Technology of China
Yan Zhang
Weiping Zhang
论文数: 0引用数: 0
h-index: 0
机构:
Dept.of Statistics and Finance,University of Science and Technology of ChinaDept.of Statistics and Finance,University of Science and Technology of China
Weiping Zhang
Xiao Guo
论文数: 0引用数: 0
h-index: 0
机构:
Dept.of Statistics and Finance,University of Science and Technology of ChinaDept.of Statistics and Finance,University of Science and Technology of China
机构:
Henan Univ, Sch Math & Stat, Kaifeng, Peoples R China
Henan Univ, Sch Math & Stat, Kaifeng 475004, Henan, Peoples R ChinaHenan Univ, Sch Math & Stat, Kaifeng, Peoples R China
Xue, Liugen
Xie, Junshan
论文数: 0引用数: 0
h-index: 0
机构:
Henan Univ, Sch Math & Stat, Kaifeng, Peoples R ChinaHenan Univ, Sch Math & Stat, Kaifeng, Peoples R China
Xie, Junshan
Yang, Xiaohui
论文数: 0引用数: 0
h-index: 0
机构:
Henan Univ, Sch Math & Stat, Kaifeng, Peoples R ChinaHenan Univ, Sch Math & Stat, Kaifeng, Peoples R China