Dominated Splitting from Constant Periodic Data and Global Rigidity of Anosov Automorphisms

被引:2
作者
Dewitt, Jonathan [1 ]
Gogolev, Andrey [2 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
SMOOTH CONJUGACY; LOCAL RIGIDITY; DIFFEOMORPHISMS; INVARIANTS;
D O I
10.1007/s00039-024-00680-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname{GL}(d,\mathbb{R})$\end{document} cocycle over a hyperbolic system with constant periodic data has a dominated splitting whenever the periodic data indicates it should. This implies global periodic data rigidity of generic Anosov automorphisms of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{T}<^>{d}$\end{document}. Further, our approach also works when the periodic data is narrow, that is, sufficiently close to constant. We can show global periodic data rigidity for certain non-linear Anosov diffeomorphisms in a neighborhood of an irreducible Anosov automorphism with simple spectrum.
引用
收藏
页码:1370 / 1398
页数:29
相关论文
共 34 条