The effect of cosmic rays on the observational properties of the CGM

被引:2
作者
Defelippis, Daniel [1 ]
Bournaud, Frederic [1 ]
Bouche, Nicolas [2 ]
Tollet, Edouard [2 ]
Farcy, Marion [3 ]
Rey, Maxime [4 ]
Rosdahl, Joakim [2 ]
Blaizot, Jeremy [2 ]
机构
[1] Univ Paris Saclay, Univ Paris Cite, CEA, CNRS,AIM, F-91191 Gif Sur Yvette, France
[2] Univ Claude Bernard Lyon 1, CRAL UMR5574, ENS Lyon, CNRS, F-69622 Villeurbanne, France
[3] EPFL, Inst Phys, Lab Galaxy Evolut & Spectral Modelling, Observ Sauverny, Chemin Pegasi 51, CH-1290 Versoix, Switzerland
[4] Yonsei Univ, Dept Astron, 50 Yonsei-ro, Seoul 03722, South Korea
基金
新加坡国家研究基金会;
关键词
methods: numerical; cosmic rays; galaxies: evolution; galaxies: haloes; MUSE GAS-FLOW; STAR-FORMING GALAXIES; DRIVEN GALACTIC WINDS; ILLUSTRISTNG SIMULATIONS; CIRCUMGALACTIC MEDIUM; SUPERNOVA FEEDBACK; TRANSPORT; IMPACT; ABSORPTION; MASS;
D O I
10.1093/mnras/stae837
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The circumgalactic medium (CGM) contains information on the cumulative effect of galactic outflows over time, generally thought to be caused by feedback from star formation and active galactic nuclei. Observations of such outflows via absorption in CGM gas of quasar sightlines show a significant amount of cold (less than or similar to 10(4)K) gas, which cosmological simulations struggle to reproduce. Here, we use the adaptive mesh refinement hydrodynamical code Ramses to investigate the effect of cosmic rays (CR) on the cold gas content of the CGM using three zoom realizations of a z = 1 star-forming galaxy with supernova mechanical feedback: one with no CR feedback (referred to as no-CR), one with a medium CR diffusion coefficient kappa=10(28)cm(2)s(-1) (CR-kappa(med)), and one with a high rate of diffusion of kappa=3x10(29)cm(2)s(-1) (CR-kappa(high)). We find that, for CR-kappa(med), the effects of CRs are largely confined to the galaxy itself as CRs do not extend far into the CGM. However, for CR-kappa(high), the CGM temperature is lowered and the amount of outflowing gas is boosted. Our CR simulations fall short of the observed Mg ii covering fraction, a tracer of gas at temperatures less than or similar to 10(4) K, but the CR-kappa(high) simulation is more in agreement with covering fractions of C iv and O vi, which trace higher temperature gas.
引用
收藏
页码:52 / 65
页数:14
相关论文
共 50 条
  • [41] Neutrinos and cosmic rays
    Gaisser, Thomas K.
    Stanev, Todor
    ASTROPARTICLE PHYSICS, 2012, 39-40 : 120 - 128
  • [42] The origin of cosmic rays
    Biermann, PL
    SPACE SCIENCE REVIEWS, 1995, 74 (3-4) : 385 - 396
  • [43] Antimatter cosmic rays
    Chardonnet, P
    Salati, P
    Taillet, R
    NEW ASTRONOMY, 1999, 4 (04): : 275 - 282
  • [44] A theory of cosmic rays
    Dar, Arnon
    De Rujula, A.
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 466 (06): : 179 - 241
  • [45] Cosmic Rays And The Environment
    Sima, Octavian
    Rebel, Heinigerd
    EXOTIC NUCLEI AND NUCLEAR/PARTICLE ASTROPHYSICS (IV): FROM NUCLEI TO STARS, 2012, 1498 : 282 - 290
  • [46] Cosmic rays in astrospheres
    Scherer, K.
    van der Schyff, A.
    Bomans, D. J.
    Ferreira, S. E. S.
    Fichtner, H.
    Kleimann, J.
    Strauss, R. D.
    Weis, K.
    Wiengarten, T.
    Wodzinski, T.
    ASTRONOMY & ASTROPHYSICS, 2015, 576
  • [47] Cosmic Rays and Cosmology
    Wibig, Tadeus
    Wolfendale, Arnold
    EXOTIC NUCLEI AND NUCLEAR /PARTICLE ASTROPHYSICS (II), 2008, 972 : 321 - +
  • [48] Cosmic Rays in Superbubbles
    Tolksdorf, T.
    Grenier, I. A.
    Joubaud, T.
    Schlickeiser, R.
    ASTROPHYSICAL JOURNAL, 2019, 879 (02)
  • [49] Cosmic rays and climate
    Kirkby, Jasper
    SURVEYS IN GEOPHYSICS, 2007, 28 (5-6) : 333 - 375
  • [50] Introduction to Cosmic Rays
    Chirinos, J.
    COSMIC RAYS AND ASTROPHYSICS, 2009, 1123 : 39 - 47