Fault-Tolerant Control for Flexible Structures With Partial Output Constraint

被引:13
作者
Han, Zhiji [1 ,2 ,3 ]
Liu, Zhijie [1 ,2 ,3 ]
Wang, Jun-Wei [1 ,2 ,3 ]
He, Wei [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol Beijing, Key Lab Intelligent Unmanned Syst, Minist Educ, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Intelligence Sci & Technol, Beijing 100083, Peoples R China
[3] Univ Sci & Technol Beijing, Inst Artificial Intelligence, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Actuators; Flexible structures; Mathematical models; Fault tolerant systems; Fault tolerance; Hilbert space; Vibrations; Constraint control; distributed parameter system; fault-tolerant control; flexible structure; relaxed initial condition; TRACKING CONTROL; NONLINEAR-SYSTEMS; BEAM;
D O I
10.1109/TAC.2023.3337110
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we propose an adaptive fault-tolerant control strategy for flexible string systems and extend the result to Euler-Bernoulli beam systems under deferred and asymmetric boundary partial output constraints. The designed control strategies consist of a boundary control law and two adaptive parameter update laws. A hyperbolic tangent function is applied to realize rejection to disturbance. With the adaptive technique, the unknown actuator faults are compensated. The deferred partial output constraints are addressed by utilizing a shifting function to remove the initial limitation on the boundary output and constructing a novel asymmetric barrier Lyapunov function. Furthermore, it is proven that both the controlled string and Euler-Bernoulli beam systems are well-posed and meet the deferred constraint conditions. Finally, extensive simulation examples are presented to demonstrate the performance of the proposed control methods.
引用
收藏
页码:2668 / 2675
页数:8
相关论文
共 30 条
[1]  
[Anonymous], 2011, INT J CONTROL, V84, P947
[2]  
[Anonymous], 1999, R. F.
[3]   Neural Manifold Modulated Continual Reinforcement Learning for Musculoskeletal Robots [J].
Chen, Jiahao ;
Chen, Ziyu ;
Yao, Chaojing ;
Qiao, Hong .
IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2024, 16 (01) :86-99
[4]   Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints [J].
Chen, Mou ;
Ge, Shuzhi Sam ;
Ren, Beibei .
AUTOMATICA, 2011, 47 (03) :452-465
[5]  
Curtain H., 1995, An Introduction to Infinite-Dimensional LinearSystems Theory
[6]   Trajectory Planning Approach to Output Tracking for a 1-D Wave Equation [J].
Feng, Hongyinping ;
Guo, Bao-Zhu ;
Wu, Xiao-Hui .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (05) :1841-1854
[7]   Vibration control of an Euler-Bernoulli beam under unknown spatiotemporally varying disturbance [J].
Ge, Shuzhi Sam ;
Zhang, Shuang ;
He, Wei .
INTERNATIONAL JOURNAL OF CONTROL, 2011, 84 (05) :947-960
[8]  
Guo O., Stability and Stabilization of InfiniteDimensional Systems With Applications
[9]   Robust Adaptive Boundary Control of a Vibrating String Under Unknown Time-Varying Disturbance [J].
He, Wei ;
Ge, Shuzhi Sam .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2012, 20 (01) :48-58
[10]   Distributed sampled-data control of Kuramoto-Sivashinsky equation [J].
Kang, Wen ;
Fridman, Emilia .
AUTOMATICA, 2018, 95 :514-524