Many-body interactions and deep neural network potentials for water

被引:9
作者
Zhai, Yaoguang [1 ,2 ]
Rashmi, Richa [1 ]
Palos, Etienne [1 ]
Paesani, Francesco [1 ,3 ,4 ,5 ]
机构
[1] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92039 USA
[2] Univ Calif San Diego, Dept Comp Sci & Engn, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Mat Sci & Engn, La Jolla, CA 92023 USA
[4] Univ Calif San Diego, Halicioglu Data Sci Inst, La Jolla, CA 92093 USA
[5] Univ Calif San Diego, San Diego Supercomp Ctr, La Jolla, CA 92093 USA
关键词
CORRELATION-ENERGY; AB-INITIO; CHEMICAL ACCURACY; HEXAMER; SIMULATIONS; CLUSTERS; CAGE; CHEMISTRY; SURFACE; MODELS;
D O I
10.1063/5.0203682
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a detailed assessment of deep neural network potentials developed within the Deep Potential Molecular Dynamics (DeePMD) framework and trained on the MB-pol data-driven many-body potential energy function. Specific focus is directed at the ability of DeePMD-based potentials to correctly reproduce the accuracy of MB-pol across various water systems. Analyses of bulk and interfacial properties as well as many-body interactions characteristic of water elucidate inherent limitations in the transferability and predictive accuracy of DeePMD-based potentials. These limitations can be traced back to an incomplete implementation of the "nearsightedness of electronic matter" principle, which may be common throughout machine learning potentials that do not include a proper representation of self-consistently determined long-range electric fields. These findings provide further support for the "short-blanket dilemma" faced by DeePMD-based potentials, highlighting the challenges in achieving a balance between computational efficiency and a rigorous, physics-based representation of the properties of water. Finally, we believe that our study contributes to the ongoing discourse on the development and application of machine learning models in simulating water systems, offering insights that could guide future improvements in the field.
引用
收藏
页数:12
相关论文
共 50 条
[41]   MBX: A many-body energy and force calculator for data-driven many-body simulations [J].
Riera, Marc ;
Knight, Christopher ;
Bull-Vulpe, Ethan F. ;
Zhu, Xuanyu ;
Agnew, Henry ;
Smith, Daniel G. A. C. ;
Simmonett, Andrew ;
Paesani, Francesco .
JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (05)
[42]   Many-body meets QM/MM: Application to indole in water solution [J].
Conte, Adriano Mosca ;
Ippoliti, Emiliano ;
Del Sole, Rodolfo ;
Carloni, Paolo ;
Pulci, Olivia .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2010, 247 (08) :1920-1924
[43]   Strain Control of Fermiology and Many-Body Interactions in Two-Dimensional Ruthenates [J].
Burganov, B. ;
Adamo, C. ;
Mulder, A. ;
Uchida, M. ;
King, P. D. C. ;
Harter, J. W. ;
Shai, D. E. ;
Gibbs, A. S. ;
Mackenzie, A. P. ;
Uecker, R. ;
Bruetzam, M. ;
Beasley, M. R. ;
Fennie, C. J. ;
Schlom, D. G. ;
Shen, K. M. .
PHYSICAL REVIEW LETTERS, 2016, 116 (19)
[44]   Many-body interactions and the electric response of hydrogen-bonded molecular chains [J].
Zawada, A. ;
Bartkowiak, W. .
COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2011, 967 (01) :120-128
[45]   Generalized Switch Functions in the Multilevel Many-Body Expansion Method and Its Application to Water Clusters [J].
Chen, Guo Dong ;
Weng, Jingwei ;
Song, Guoliang ;
Li, Zhen Hua .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (05) :2010-2020
[46]   Dependence of the Many-Body Interaction Strength in Water Clusters (H2O)n on the Water-Water Distance [J].
Yang Wei ;
Li Xiao-Lei ;
Wang Chang-Sheng .
ACTA PHYSICO-CHIMICA SINICA, 2015, 31 (12) :2285-+
[47]   The Many-Body Expansion for Aqueous Systems Revisited: II. Alkali Metal and Halide Ion-Water Interactions [J].
Heindel, Joseph P. ;
Xantheas, Sotiris S. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (04) :2200-2216
[48]   When are Many-Body Effects Significant? [J].
Ouyang, John F. ;
Bettens, Ryan P. A. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (12) :5860-5867
[49]   Many-Body Models for Molecular Nanomagnets [J].
Chiesa, A. ;
Carretta, S. ;
Santini, P. ;
Amoretti, G. ;
Pavarini, E. .
PHYSICAL REVIEW LETTERS, 2013, 110 (15)
[50]   Quantum Many-Body Spin Ratchets [J].
Zadnik, Lenart ;
Ljubotina, Marko ;
Krajnik, Ziga ;
Ilievski, Enej ;
Prosen, Tomaz .
PRX QUANTUM, 2024, 5 (03)