A Dusty Locale: evolution of galactic dust populations from Milky Way to dwarf-mass galaxies

被引:11
作者
Choban, Caleb R. [1 ,2 ,3 ]
Keres, Dusan [1 ,2 ]
Sandstrom, Karin M. [1 ,2 ]
Hopkins, Philip F. [4 ]
Hayward, Christopher C. [5 ]
Faucher-Giguere, Claude-Andre [6 ,7 ]
机构
[1] Univ Calif San Diego, Dept Astron & Astrophys, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Ctr Astrophys & Space Sci, Dept Phys, La Jolla, CA 92093 USA
[3] Indiana Univ, Dept Astron, Bloomington, IN 47405 USA
[4] CALTECH, TAPIR, Mailcode 350-17, Pasadena, CA 91125 USA
[5] Flatiron Inst, Ctr Computat Astrophys, New York, NY 10010 USA
[6] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
[7] Northwestern Univ, CIERA, Evanston, IL 60208 USA
关键词
methods: numerical; dust; extinction; galaxies: evolution; galaxies: ISM; LARGE-MAGELLANIC-CLOUD; TO-METALS RATIO; POLYCYCLIC AROMATIC-HYDROCARBONS; PHASE ELEMENT DEPLETIONS; GRAIN-SIZE DISTRIBUTION; INTERSTELLAR DUST; MODELING DUST; COSMOLOGICAL SIMULATIONS; CIRCUMGALACTIC MEDIUM; INFRARED-EMISSION;
D O I
10.1093/mnras/stae716
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Observations indicate dust populations vary between galaxies and within them, suggesting a complex life cycle and evolutionary history. Here we investigate the evolution of galactic dust populations across cosmic time using a suite of cosmological zoom-in simulations from the Feedback in Realistic Environments project, spanning M-vir=10(9-12)M(circle dot);M & lowast;=10(6-11)M(circle dot). Our simulations incorporate a dust evolution model that accounts for the dominant sources of dust production, growth, and destruction and follows the evolution of specific dust species. All galactic dust populations in our suite exhibit similar evolutionary histories, with gas-dust accretion being the dominant producer of dust mass for all but the most metal-poor galaxies. Similar to previous works, we find the onset of efficient gas-dust accretion occurs above a 'critical' metallicity threshold (Z(crit)). Due to this threshold, our simulations reproduce observed trends between galactic D/Z and metallicity and element depletion trends in the interstellar medium. However, we find Z(crit) varies between dust species due to differences in key element abundances, dust physical properties, and life cycle processes resulting in Z(crit)similar to 0.05Z(circle dot),0.2Z(circle dot),0.5Z(circle dot) for metallic iron, silicates, and carbonaceous dust, respectively. These variations could explain the lack of small carbonaceous grains observed in the Magellanic Clouds. We also find a delay between the onset of gas-dust accretion and when a dust population reaches equilibrium, which we call the equilibrium time-scale (tau(equil)). The relation between tau(equil) and the metal enrichment time-scale of a galaxy, determined by its recent evolutionary history, can contribute to the scatter in the observed relation between galactic D/Z and metallicity.
引用
收藏
页码:2356 / 2378
页数:23
相关论文
共 114 条
[1]   ABUNDANCES OF THE ELEMENTS - METEORITIC AND SOLAR [J].
ANDERS, E ;
GREVESSE, N .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1989, 53 (01) :197-214
[2]   The cosmic baryon cycle and galaxy mass assembly in the FIRE simulations [J].
Angles-Alcazar, Daniel ;
Faucher-Giguere, Claude-Andre ;
Keres, Dusan ;
Hopkins, Philip F. ;
Quataert, Eliot ;
Murray, Norman .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 470 (04) :4698-4719
[3]  
Aniano G, 2020, ASTROPHYS J, V889, DOI 10.3847/1538-4357/ab5fdb
[4]   MODELING DUST AND STARLIGHT IN GALAXIES OBSERVED BY SPITZER AND HERSCHEL: NGC 628 AND NGC 6946 [J].
Aniano, G. ;
Draine, B. T. ;
Calzetti, D. ;
Dale, D. A. ;
Engelbracht, C. W. ;
Gordon, K. D. ;
Hunt, L. K. ;
Kennicutt, R. C. ;
Krause, O. ;
Leroy, A. K. ;
Rix, H. -W. ;
Roussel, H. ;
Sandstrom, K. ;
Sauvage, M. ;
Walter, F. ;
Armus, L. ;
Bolatto, A. D. ;
Crocker, A. ;
Meyer, J. Donovan ;
Galametz, M. ;
Helou, G. ;
Hinz, J. ;
Johnson, B. D. ;
Koda, J. ;
Montiel, E. ;
Murphy, E. J. ;
Skibba, R. ;
Smith, J. -D. T. ;
Wolfire, M. G. .
ASTROPHYSICAL JOURNAL, 2012, 756 (02)
[5]   Galaxy simulation with the evolution of grain size distribution [J].
Aoyama, Shohei ;
Hirashita, Hiroyuki ;
Nagamine, Kentaro .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 491 (03) :3844-3859
[6]   Cosmological simulation with dust formation and destruction [J].
Aoyama, Shohei ;
Hou, Kuan-Chou ;
Hirashita, Hiroyuki ;
Nagamine, Kentaro ;
Shimizu, Ikkoh .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 478 (04) :4905-4921
[7]   Dust formation history of galaxies: A critical role of metallicity for the dust mass growth by accreting materials in the interstellar medium [J].
Asano, Ryosuke S. ;
Takeuchi, Tsutomu T. ;
Hirashita, Hiroyuki ;
Inoue, Akio K. .
EARTH PLANETS AND SPACE, 2013, 65 (03) :213-222
[8]   The Chemical Composition of the Sun [J].
Asplund, Martin ;
Grevesse, Nicolas ;
Sauval, A. Jacques ;
Scott, Pat .
ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, VOL 47, 2009, 47 :481-522
[9]   COSMIC EVOLUTION OF DUST IN GALAXIES: METHODS AND PRELIMINARY RESULTS [J].
Bekki, Kenji .
ASTROPHYSICAL JOURNAL, 2015, 799 (02)
[10]   Live fast, die young: GMC lifetimes in the FIRE cosmological simulations of Milky Way mass galaxies [J].
Benincasa, Samantha M. ;
Loebman, Sarah R. ;
Wetzel, Andrew ;
Hopkins, Philip F. ;
Murray, Norman ;
Bellardini, Matthew A. ;
Faucher-Giguere, Claude-Andre ;
Guszejnov, David ;
Orr, Matthew .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 497 (03) :3993-3999