High-temperature all-solid-state batteries with LiBH4 as electrolyte - a case study exploring the performance of TiO2 nanorods, Li4Ti5O12 and graphite as active materials

被引:1
作者
Volck, Marlena [1 ,3 ]
Gadermaier, Bernhard [1 ]
Hennige, Volker [3 ]
Wilkening, H. Martin R. [1 ,2 ]
Hanzu, Ilie [1 ,2 ]
机构
[1] Graz Univ Technol NAWI Graz, Inst Chem & Technol Mat, Stremayrgasse 9, A-8010 Graz, Austria
[2] Alistore ERI European Res Inst, CNRS FR3104, Rue Baudelocque, F-80039 Amiens, France
[3] AVL LIST GmbH, Hans-List-Pl 1, A-8020 Graz, Austria
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES | 2024年 / 79卷 / 04期
关键词
solid-state batteries; lithium borohydride; nanosized rutile; graphite; LTO;
D O I
10.1515/znb-2023-0093
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The hexagonal high-temperature form of LiBH4 is known as a fast ion conductor. Here, we investigated its suitability as a solid electrolyte in high-temperature all-solid-state cells when combined with the following active materials: Li metal, graphite, lithium titanium oxide (Li4Ti5O12, LTO), and nanocrystalline rutile (TiO2). First results using lithium anodes and rutile nanorods as cathode material show that a cell constructed by simple cold-pressing operates at reversible discharge capacities in the order of 125 mA h g(-1) at a C-rate of C/5 and at temperatures as high as 393 K. Besides TiO2, the compatibility of the LiBH4 with other active materials such as graphite and LTO was tested. We found evidence of possible interface instabilities that manifest through rare, yet still detrimental, self-charge processes that may be relevant for hydrogen storage applications. Moreover, we investigated the long-term cycling behavior of the cells assembled and demonstrate the successful employment of LiBH4 as an easily processable model solid electrolyte in practical test cells.
引用
收藏
页码:243 / 249
页数:7
相关论文
共 16 条
  • [1] Bottke P., 2014, Phys. Chem. Chem.Phys., V16, P13
  • [2] Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors "Li7La3Zr2O12" and Li7-xLa3Zr2-xTaxO12 with garnet-type structure
    Buschmann, Henrik
    Berendts, Stefan
    Mogwitz, Boris
    Janek, Juergen
    [J]. JOURNAL OF POWER SOURCES, 2012, 206 : 236 - 244
  • [3] A thermodynamic assessment of LiBH4
    El Kharbachi, Abdelouahab
    Pinatel, Eugenio
    Nuta, Ioana
    Baricco, Marcello
    [J]. CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2012, 39 : 80 - 90
  • [4] Epp V., Phys. Rev., VB2010
  • [5] Janek J, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.141, 10.1038/nenergy.2016.141]
  • [6] Just A., J. Power Sources2018, V382, P2
  • [7] Lithium superionic conduction in lithium borohydride accompanied by structural transition
    Matsuo, Motoaki
    Nakamori, Yuko
    Orimo, Shin-ichi
    Maekawa, Hideki
    Takamura, Hitoshi
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (22)
  • [8] Prutsch D., ACS Appl. Mater. Interfaces2015, V7
  • [9] Puszkiel J, 2017, INORGANICS, V5, DOI 10.3390/inorganics5040074
  • [10] Critical Current Densities for High-Performance All-Solid-State Li-Metal Batteries: Fundamentals, Mechanisms, Interfaces, Materials, and Applications
    Sarkar, Subhajit
    Thangadurai, Venkataraman
    [J]. ACS ENERGY LETTERS, 2022, 7 (04): : 1492 - 1527