3D Analysis of Surface Topography of Sand Particles Using Spectral Methods

被引:0
作者
Khan, Rizwan [1 ]
Latha, Gali Madhavi [1 ]
机构
[1] Indian Inst Sci, Dept Civil Engn, Bengaluru 560012, Karnataka, India
关键词
Power spectral density (PSD); Sand particles; Surface roughness; Asperity curvature; Fractal dimension; X-RAY TOMOGRAPHY; STATISTICAL ANALYSIS; FRACTAL DIMENSION; ROUGHNESS; SHAPE; QUANTIFICATION; GENERATION; BEHAVIOR; MODEL;
D O I
10.1061/JMCEE7.MTENG-16892
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The surface roughness of the particles in a granular material plays a significant role in its engineering behavior. Because the microsurface features that contribute to the roughness are highly complex and irregular in nature, precise topographical measurements and a mathematically rigorous computational approach are needed for the accurate quantification of surface roughness. In this study, surface roughness of particles from three different sands that represent different sizes and shapes was quantified using spectral methods. A 3D noncontact optical profilometer was used to obtain a high-resolution representative scan area of sand particles. Higher-order moments of the power spectral density (PSD) were used to compute surface roughness parameters such as asperity slope and curvature. The surface roughness values were found to increase with the slope and curvature of the asperities. The value of asperity density, which has a physical significance in contact mechanics, was estimated to be about eight for all type of sands studied. Fractal analysis was carried out on the data obtained from profilometer and microcomputed tomography (mu CT) scans to compute the fractal dimensions of sand particles using these two different instruments and compare them. Further, the angle of repose of different sands was correlated to their surface roughness.
引用
收藏
页数:12
相关论文
共 40 条
[1]   Characterizing surface roughness and shape of sands using digital microscopy [J].
Alshibli, KA ;
Alsaleh, MI .
JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2004, 18 (01) :36-45
[2]   Quantifying Morphology of Sands Using 3D Imaging [J].
Alshibli, Khalid A. ;
Druckrey, Andrew M. ;
Al-Raoush, Riyadh I. ;
Weiskittel, Taylor ;
Lavrik, Nickolay V. .
JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2015, 27 (10)
[3]   Effect of Particle Shape on the Mechanical Behavior of Natural Sands [J].
Altuhafi, Fatin N. ;
Coop, Matthew R. ;
Georgiannou, Vasiliki N. .
JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2016, 142 (12)
[4]   The influence of particle characteristics on the behaviour of coarse grained soils [J].
Cavarretta, I. ;
Coop, M. ;
O'Sullivan, C. .
GEOTECHNIQUE, 2010, 60 (06) :413-423
[5]   The spectrum of tomographic earth models [J].
Chevrot, S ;
Montagner, JP ;
Snieder, R .
GEOPHYSICAL JOURNAL INTERNATIONAL, 1998, 133 (03) :783-788
[6]  
CLARKE KC, 1986, COMPUT GEOSCI, V12, P713, DOI 10.1016/0098-3004(86)90047-6
[7]  
Cornforth D.H., 1973, Evaluation of relative density and its role in geotechnical projects involving cohesionless soil, P281, DOI DOI 10.1520/STP37878S
[8]   Exploring the macro- and micro-scale response of an idealised granular material in the direct shear apparatus [J].
Cui, L. ;
O'Sullivan, C. .
GEOTECHNIQUE, 2006, 56 (07) :455-468
[9]   Study of interfacial stiffness ratio of a rough surface in contact using a spring model [J].
Gonzalez-Valadez, M. ;
Baltazar, A. ;
Dwyer-Joyce, R. S. .
WEAR, 2010, 268 (3-4) :373-379
[10]   A SURFACE ROUGHNESS PARAMETER IN HERTZ CONTACT [J].
GREENWOOD, JA ;
JOHNSON, KL ;
MATSUBARA, E .
WEAR, 1984, 100 (1-3) :47-57