A Fine-Tuned EfficientNet B1 Based Deep Transfer Learning Framework for Multiple Types of Brain Disorder Classification

被引:0
作者
Ghosh, Arpita [1 ]
Soni, Badal [1 ]
Baruah, Ujwala [1 ]
机构
[1] Natl Inst Technol, Comp Sci & Engn, NIT Rd, Silchar 788010, Assam, India
基金
英国科研创新办公室;
关键词
Brain disorder; Transfer learning; Inception V3; ResNet50; V2; EfficientNetB1; Optimizer;
D O I
10.1007/s40998-024-00726-w
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Automated brain disorder classification for convenient treatment is one of the most complicated and widely spread problems. With the help of cutting-edge hardware, deep learning approaches are outperforming conventional brain disorder classification techniques in the medical image field. To solve this problem researchers have developed various transfer learning-based techniques. Pre-trained deep learning architectures are used here for feature extraction. This paper proposes a deep learning framework that includes a pre-trained fine-tuned EfficientNet B1 model to classify three different types of brain disorder and a normal category with 93%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$93\%$$\end{document} of test accuracy. In order to evaluate the proposed framework, the dataset was trained and validated using additional deep learning models Inception V3 and ResNet50 V2 for feature extraction using softmax and support vector machine (SVM) classifiers and employing three primary optimizers: stochastic gradient descent (SGD), root mean squared propagation (RMSProp), and Adam. The EfficientNet B1 with softmax classifier and Adam optimizer outperformed the other two state-of-the-art models and achieved the best results.
引用
收藏
页码:1279 / 1299
页数:21
相关论文
共 50 条
  • [31] Enhanced Deep Learning for Pathology Image Classification: A Knowledge Transfer based Stepwise Fine-tuning Scheme
    Qu, Jia
    Hiruta, Nobuyuki
    Terai, Kensuke
    Nosato, Hirokazu
    Murakawa, Masahiro
    Sakanashi, Hidenori
    BIOIMAGING: PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 2, 2019, : 92 - 99
  • [32] Multiple Types of Cancer Classification Using CT/MRI Images Based on Learning Without Forgetting Powered Deep Learning Models
    Subramanian, Malliga
    Cho, Jaehyuk
    Sathishkumar, Veerappampalayam Easwaramoorthy
    Naren, Obuli Sai
    IEEE ACCESS, 2023, 11 : 10336 - 10354
  • [33] A comparative analysis and classification of cancerous brain tumors detection based on classical machine learning and deep transfer learning models
    Singh, Yajuvendra Pratap
    Lobiyal, D. K.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (13) : 39537 - 39562
  • [34] A Deep Transfer Learning Framework for 3D Brain Imaging Based on Optimal Mass Transport
    Zeng, Ling-Li
    Ching, Christopher R. K.
    Abaryan, Zvart
    Thomopoulos, Sophia I.
    Gao, Kai
    Zhu, Alyssa H.
    Ragothaman, Anjanibhargavi
    Rashid, Faisal
    Harrison, Marc
    Salminen, Lauren E.
    Riedel, Brandalyn C.
    Jahanshad, Neda
    Hu, Dewen
    Thompson, Paul M.
    MACHINE LEARNING IN CLINICAL NEUROIMAGING AND RADIOGENOMICS IN NEURO-ONCOLOGY, MLCN 2020, RNO-AI 2020, 2020, 12449 : 169 - 176
  • [35] A comparative analysis and classification of cancerous brain tumors detection based on classical machine learning and deep transfer learning models
    Yajuvendra Pratap Singh
    D.K Lobiyal
    Multimedia Tools and Applications, 2024, 83 : 39537 - 39562
  • [36] Automatic Recognition of Multiple Weld Types Based on Structured Light Vision Sensor Using Deep Transfer Learning
    Lu, Xueqin
    Xie, Chengzhi
    He, Xianghuan
    Li, Siwei
    Xu, Yuzhe
    He, Songjie
    Fang, Jian
    Zhang, Min
    Yang, Xingwu
    IEEE SENSORS JOURNAL, 2023, 23 (07) : 7142 - 7152
  • [37] Deep learning-based classification and application test of multiple crop leaf diseases using transfer learning and the attention mechanism
    Zhang, Yifu
    Sun, Qian
    Chen, Ji
    Zhou, Huini
    COMPUTING, 2024, 106 (09) : 3063 - 3084
  • [38] PatchResNet: Multiple Patch Division–Based Deep Feature Fusion Framework for Brain Tumor Classification Using MRI Images
    Taha Muezzinoglu
    Nursena Baygin
    Ilknur Tuncer
    Prabal Datta Barua
    Mehmet Baygin
    Sengul Dogan
    Turker Tuncer
    Elizabeth Emma Palmer
    Kang Hao Cheong
    U. Rajendra Acharya
    Journal of Digital Imaging, 2023, 36 : 973 - 987
  • [39] A novel method for the detection and classification of multiple diseases using transfer learning-based deep learning techniques with improved performance
    Natarajan, Krishnamoorthy
    Muthusamy, Suresh
    Sha, Mizaj Shabil
    Sadasivuni, Kishor Kumar
    Sekaran, Sreejith
    Charles Gnanakkan, Christober Asir Rajan
    A.Elngar, Ahmed
    Neural Computing and Applications, 2024, 36 (30) : 18979 - 18997
  • [40] Transfer Learning Using Deep Neural Networks for Classification of Truck Body Types Based on Side-Fire Lidar Data
    Reza Vatani Nezafat
    Olcay Sahin
    Mecit Cetin
    Journal of Big Data Analytics in Transportation, 2019, 1 (1): : 71 - 82