Fractal dimension of global attractors for a Kirchhoff wave equation with a strong damping and a memory term

被引:1
作者
Qin, Yuming [1 ,2 ]
Wang, Hongli [1 ]
Bin Yang [3 ]
机构
[1] Donghua Univ, Dept Math, Shanghai 201620, Peoples R China
[2] Donghua Univ, Insitute Nonlinear Sci, Shanghai 201620, Peoples R China
[3] Donghua Univ, Coll Informat Sci & Technol, Shanghai 201620, Peoples R China
关键词
Fractal dimension; subcritical case; Kirchhoff wave equation; global attractor; stabilizability inequality; HYPERBOLIC EQUATION; EXISTENCE; BEHAVIOR;
D O I
10.3233/ASY-231881
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the dimension of the global attractors for a time-dependent strongly damped subcritical Kirchhoff wave equation with a memory term. A careful analysis is required in the proof of a stabilizability inequality. The main result establishes the finite dimensionality of the global attractor.
引用
收藏
页码:85 / 95
页数:11
相关论文
共 21 条
[1]  
[Anonymous], 1990, Funkcialaj Ekvacioj
[2]  
Chueshov I, 2010, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-87712-9
[3]   Long-time dynamics of Kirchhoff wave models with strong nonlinear damping [J].
Chueshov, Igor .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) :1229-1262
[5]   ATTRACTORS OF THE STRONGLY DAMPED KIRCHHOFF WAVE EQUATION ON RN [J].
Ding, Pengyan ;
Yang, Zhijian .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (02) :825-843
[6]  
Ghisi M, 2004, ASYMPTOTIC ANAL, V40, P25
[7]   Global attractors for a semilinear hyperbolic equation in viscoelasticity [J].
Giorgi, C ;
Rivera, JEM ;
Pata, V .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 260 (01) :83-99
[8]   Long-time dynamics for a class of Kirchhoff models with memory [J].
Jorge Silva, Marcio Antonio ;
Ma, To Fu .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (02)
[9]  
Kirchhoff G, 1883, Vorlesungen uber mechanik
[10]  
KouemouPatcheu S, 1997, COMMUN PART DIFF EQ, V22, P2007