High spatio-temporal resolution predictions of PM2.5 using low-cost sensor data

被引:6
作者
Kar, Armita [1 ]
Ahmed, Mohammed [2 ]
May, Andrew A. [2 ]
Le, Huyen T. K. [1 ]
机构
[1] Ohio State Univ, Dept Geog, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Civil Environm & Geodet Engn, Columbus, OH 43210 USA
关键词
Space-time modeling; Machine learning; Kriging; Air pollution exposure; Multi-city analysis; AEROSOL OPTICAL DEPTH; PARTICULATE MATTER; AIR-POLLUTION; EXPOSURE ASSESSMENT; MODEL; AMBIENT; REGRESSION; MORTALITY; EMISSIONS;
D O I
10.1016/j.atmosenv.2024.120486
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We generated PM2.5 predictions at a high spatio-temporal resolution in the Columbus, OH, Denver, CO, and Pittsburgh, PA metropolitan areas using low-cost PurpleAir sensor data. We used multiple modeling approaches, namely random forest (RF), random forest spatial interpolation (RFSI), space-time regression kriging (STRK), and random forest kriging (RFK). We trained separate models for each combination of hour, month, and city to predict PM2.5 concentrations at 8 a.m. and 6 p.m. on any specific day at a spatial resolution of 100m. In most cases, models that account for the spatio-temporal relationships (e.g., STRK, RFK, RFSI) show better performance than non-spatio-temporal machine learning models (e.g., RF). On average, considering all models of all cities, RFSI (mean MAE = 1.75, R2 = 0.67) and STRK (mean MAE = 1.74, R2 = 0.63) models perform better than RFK models (mean MAE = 2.11, R2 = 0.59), and STRK has clearest spatial patterns. We found that kriging models, especially STRK, are superior in capturing the spatio-temporal relationships and resemble the generic land use pattern of the city, while RFSI models are effective when dealing with very large datasets with missing cases. Our study demonstrates a multi -model approach that could inform low-cost sensor deployment to facilitate air quality modeling. Our high -resolution predictions could also facilitate studies on short-term, traffic -based exposure assessment.
引用
收藏
页数:11
相关论文
共 66 条
[1]   Addressing Global Mortality from Ambient PM2.5 [J].
Apte, Joshua S. ;
Marshall, Julian D. ;
Cohen, Aaron J. ;
Brauer, Michael .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (13) :8057-8066
[2]   Traffic contribution to PM2.5 increment in the near-road environment [J].
Askariyeh, Mohammad Hashem ;
Zietsman, Joe ;
Autenrieth, Robin .
ATMOSPHERIC ENVIRONMENT, 2020, 224
[3]   Development and application of a United States-wide correction for PM2.5 data collected with the PurpleAir sensor [J].
Barkjohn, Karoline K. ;
Gantt, Brett ;
Clements, Andrea L. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2021, 14 (06) :4617-4637
[4]   A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh [J].
Benjamin, Stanley G. ;
Weygandt, Stephen S. ;
Brown, John M. ;
Hu, Ming ;
Alexander, Curtis R. ;
Smirnova, Tatiana G. ;
Olson, Joseph B. ;
James, Eric P. ;
Dowell, David C. ;
Grell, Georg A. ;
Lin, Haidao ;
Peckham, Steven E. ;
Smith, Tracy Lorraine ;
Moninger, William R. ;
Kenyon, Jaymes S. ;
Manikin, Geoffrey S. .
MONTHLY WEATHER REVIEW, 2016, 144 (04) :1669-1694
[5]   Publicly available low-cost sensor measurements for PM2.5 exposure modeling: Guidance for monitor deployment and data selection [J].
Bi, Jianzhao ;
Carmona, Nancy ;
Blanco, Magali N. ;
Gassett, Amanda J. ;
Seto, Edmund ;
Szpiro, Adam A. ;
V. Larson, Timothy ;
Sampson, Paul D. ;
Kaufman, Joel D. ;
Sheppard, Lianne .
ENVIRONMENT INTERNATIONAL, 2022, 158
[6]   Incorporating Low-Cost Sensor Measurements into High-Resolution PM2.5 Modeling at a Large Spatial Scale [J].
Bi, Jianzhao ;
Wildani, Avani ;
Chang, Howard H. ;
Liu, Yang .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2020, 54 (04) :2152-2162
[7]   Contribution of low-cost sensor measurements to the prediction of PM2.5 levels: A case study in Imperial County, California, USA [J].
Bi, Jianzhao ;
Stowell, Jennifer ;
Seto, Edmund Y. W. ;
English, Paul B. ;
Al-Hamdan, Mohammad Z. ;
Kinney, Patrick L. ;
Freedman, Frank R. ;
Liu, Yang .
ENVIRONMENTAL RESEARCH, 2020, 180
[8]   Particulate Matter Air Pollution and Cardiovascular Disease An Update to the Scientific Statement From the American Heart Association [J].
Brook, Robert D. ;
Rajagopalan, Sanjay ;
Pope, C. Arden, III ;
Brook, Jeffrey R. ;
Bhatnagar, Aruni ;
Diez-Roux, Ana V. ;
Holguin, Fernando ;
Hong, Yuling ;
Luepker, Russell V. ;
Mittleman, Murray A. ;
Peters, Annette ;
Siscovick, David ;
Smith, Sidney C., Jr. ;
Whitsel, Laurie ;
Kaufman, Joel D. .
CIRCULATION, 2010, 121 (21) :2331-2378
[9]   An Integrated Risk Function for Estimating the Global Burden of Disease Attributable to Ambient Fine Particulate Matter Exposure [J].
Burnett, Richard T. ;
Pope, C. Arden, III ;
Ezzati, Majid ;
Olives, Casey ;
Lim, Stephen S. ;
Mehta, Sumi ;
Shin, Hwashin H. ;
Singh, Gitanjali ;
Hubbell, Bryan ;
Brauer, Michael ;
Anderson, H. Ross ;
Smith, Kirk R. ;
Balmes, John R. ;
Bruce, Nigel G. ;
Kan, Haidong ;
Laden, Francine ;
Pruess-Ustuen, Annette ;
Turner, Michelle C. ;
Gapstur, Susan M. ;
Diver, W. Ryan ;
Cohen, Aaron .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2014, 122 (04) :397-403
[10]   Explore spatio-temporal PM2.5 features in northern Taiwan using machine learning techniques [J].
Chang, Fi-John ;
Chang, Li-Chiu ;
Kang, Che-Chia ;
Wang, Yi-Shin ;
Huang, Angela .
SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 736