Constraining ΛLTB models with galaxy cluster counts from next-generation surveys

被引:2
作者
Sakr, Z. [1 ,2 ,3 ]
Carvalho, A. [4 ,5 ]
Da Silva, A. [4 ,5 ]
Garcia-Bellido, J. [6 ]
Mimoso, J. P. [4 ,5 ]
Camarena, D. [7 ]
Nesseris, S. [6 ]
Martins, C. J. A. P. [8 ,9 ]
Nunes, N. [4 ,5 ]
Sapone, D. [10 ]
机构
[1] Univ Toulouse, Inst Rech Astrophys & Planetol IRAP, CNRS, UPS,CNES, 14 Ave Edouard Belin, F-31400 Toulouse, France
[2] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany
[3] Univ St Joseph, Fac Sci, Beirut 10042020, Lebanon
[4] Univ Lisbon, Fac Ciencias, CEAUL, P-1749016 Lisbon, Portugal
[5] Univ Lisbon, Fac Ciencias, Dept Fis, Edificio C8, P-1749016 Lisbon, Portugal
[6] Inst Fis Teor UAM CSIC, Campus Cantoblanco, Madrid 28049, Spain
[7] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87106 USA
[8] Univ Porto, Ctr Astrophys, Rua Estrelas 4150-762, P-4150762 Porto, Portugal
[9] Univ Porto, CAUP, Rua Estrelas, P-4150762 Porto, Portugal
[10] Univ Chile, Dept Fis, FCFM, Blanco Encalada 2008, Santiago, Chile
关键词
cosmology: observations; galaxies: clusters: general; cosmological parameters; space vehicles; surveys; methods: data analysis; COSMOLOGY CONSTRAINTS; COPERNICAN PRINCIPLE; SPECTRUM;
D O I
10.1051/0004-6361/202348200
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. The Universe's assumed homogeneity and isotropy is known as the cosmological principle. It is one of the assumptions that led to the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric and is a cornerstone of modern cosmology, because the metric plays a crucial role in the determination of the cosmological observables. Thus, it is of paramount importance to question this principle and perform observational tests that may falsify it. Aims. Here, we explore the use of galaxy cluster counts as a probe of a large-scale inhomogeneity, which is a novel approach to the study of inhomogeneous models, and we determine the precision with which future galaxy cluster surveys will be able to test the cosmological principle. Methods. We present forecast constraints on the inhomogeneous Lemaitre-Tolman-Bondi (LTB) model with a cosmological constant and cold dark matter, basically a Lambda CDM model endowed with a spherical, large-scale inhomogeneity, from a combination of simulated data according to a compilation of 'Stage-IV' galaxy surveys. For that, we followed a methodology that involves the use of a mass function correction from numerical N-body simulations of an LTB cosmology. Results. When considering the Lambda CDM fiducial model as a baseline for constructing our mock catalogs, we find that our combination of the forthcoming cluster surveys will improve the constraints on the cosmological principle parameters and the FLRW parameters by about 50% with respect to previous similar forecasts performed using geometrical and linear growth of structure probes, with +/- 20% of variations depending on the level of knowledge of systematic effects. Conclusions. These results indicate that galaxy cluster abundances are sensitive probes of inhomogeneity and that next-generation galaxy cluster surveys will thoroughly test homogeneity at cosmological scales, tightening the constraints on possible violations of the cosmological principle in the framework of Lambda LTB scenarios.
引用
收藏
页数:9
相关论文
共 38 条
[1]  
Aghamousa A., 2016, arXiv
[2]   Planck 2018 results: V. CMB power spectra and likelihoods [J].
Aghanim, N. ;
Akrami, Y. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Benabed, K. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Carron, J. ;
Casaponsa, B. ;
Challinor, A. ;
Chiang, H. C. ;
Colombo, L. P. L. ;
Combet, C. ;
Crill, B. P. ;
Cuttaia, F. ;
de Bernardis, P. ;
de Rosa, A. ;
de Zotti, G. ;
Delabrouille, J. ;
Delouis, J. -M. ;
Di Valentino, E. ;
Diego, J. M. ;
Dore, O. ;
Douspis, M. ;
Ducout, A. ;
Dupac, X. ;
Dusini, S. ;
Efstathiou, G. ;
Elsner, F. ;
Ensslin, T. A. ;
Eriksen, H. K. ;
Fantaye, Y. ;
Fernandez-Cobos, R. .
ASTRONOMY & ASTROPHYSICS, 2020, 641
[3]  
Alonso D, 2021, Arxiv, DOI arXiv:1809.01669
[4]   Halo abundances and shear in void models [J].
Alonso, David ;
Garcia-Bellido, Juan ;
Haugbolle, Troels ;
Knebe, Alexander .
PHYSICS OF THE DARK UNIVERSE, 2012, 1 (1-2) :24-31
[5]   Large scale structure simulations of inhomogeneous Lemaitre-Tolman-Bondi void models [J].
Alonso, David ;
Garcia-Bellido, Juan ;
Haugbolle, Troels ;
Vicente, Julian .
PHYSICAL REVIEW D, 2010, 82 (12)
[6]   Cosmology and fundamental physics with the Euclid satellite [J].
Amendola, Luca ;
Appleby, Stephen ;
Avgoustidis, Anastasios ;
Bacon, David ;
Baker, Tessa ;
Baldi, Marco ;
Bartolo, Nicola ;
Blanchard, Alain ;
Bonvin, Camille ;
Borgani, Stefano ;
Branchini, Enzo ;
Burrage, Clare ;
Camera, Stefano ;
Carbone, Carmelita ;
Casarini, Luciano ;
Cropper, Mark ;
de Rham, Claudia ;
Dietrich, Joerg P. ;
Di Porto, Cinzia ;
Durrer, Ruth ;
Ealet, Anne ;
Ferreira, Pedro G. ;
Finelli, Fabio ;
Garcia-Bellido, Juan ;
Giannantonio, Tommaso ;
Guzzo, Luigi ;
Heavens, Alan ;
Heisenberg, Lavinia ;
Heymans, Catherine ;
Hoekstra, Henk ;
Hollenstein, Lukas ;
Holmes, Rory ;
Hwang, Zhiqi ;
Jahnke, Knud ;
Kitching, Thomas D. ;
Koivisto, Tomi ;
Kunz, Martin ;
La Vacca, Giuseppe ;
Linder, Eric ;
March, Marisa ;
Marra, Valerio ;
Martins, Carlos ;
Majerotto, Elisabetta ;
Markovic, Dida ;
Marsh, David ;
Marulli, Federico ;
Massey, Richard ;
Mellier, Yannick ;
Montanari, Francesco ;
Mota, David F. .
LIVING REVIEWS IN RELATIVITY, 2018, 21 :1-345
[7]   Dark Energy simulations [J].
Baldi, Marco .
PHYSICS OF THE DARK UNIVERSE, 2012, 1 (1-2) :162-193
[8]   Euclid preparation: VII. Forecast validation for Euclid cosmological probes [J].
Blanchard, A. ;
Camera, S. ;
Carbone, C. ;
Cardone, V. F. ;
Casas, S. ;
Clesse, S. ;
Ilic, S. ;
Kilbinger, M. ;
Kitching, T. ;
Kunz, M. ;
Lacasa, F. ;
Linder, E. ;
Majerotto, E. ;
Markovic, K. ;
Martinelli, M. ;
Pettorino, V ;
Pourtsidou, A. ;
Sakr, Z. ;
Sanchez, A. G. ;
Sapone, D. ;
Tutusaus, I ;
Yahia-Cherif, S. ;
Yankelevich, V ;
Andreon, S. ;
Aussel, H. ;
Balaguera-Antolinez, A. ;
Baldi, M. ;
Bardelli, S. ;
Bender, R. ;
Biviano, A. ;
Bonino, D. ;
Boucaud, A. ;
Bozzo, E. ;
Branchini, E. ;
Brau-Nogue, S. ;
Brescia, M. ;
Brinchmann, J. ;
Burigana, C. ;
Cabanac, R. ;
Capobianco, V ;
Cappi, A. ;
Carretero, J. ;
Carvalho, C. S. ;
Casas, R. ;
Castander, F. J. ;
Castellano, M. ;
Cavuoti, S. ;
Cimatti, A. ;
Cledassou, R. ;
Colodro-Conde, C. .
ASTRONOMY & ASTROPHYSICS, 2020, 642
[9]   FORMATION OF GALAXIES AND LARGE-SCALE STRUCTURE WITH COLD DARK MATTER [J].
BLUMENTHAL, GR ;
FABER, SM ;
PRIMACK, JR ;
REES, MJ .
NATURE, 1984, 311 (5986) :517-525
[10]   Cluster Cosmology Constraints from the 2500 deg2 SPT-SZ Survey: Inclusion of Weak Gravitational Lensing Data from Magellan and the Hubble Space Telescope [J].
Bocquet, S. ;
Dietrich, J. P. ;
Schrabback, T. ;
Bleem, L. E. ;
Klein, M. ;
Allen, S. W. ;
Applegate, D. E. ;
Ashby, M. L. N. ;
Bautz, M. ;
Bayliss, M. ;
Benson, B. A. ;
Brodwin, M. ;
Bulbul, E. ;
Canning, R. E. A. ;
Capasso, R. ;
Carlstrom, J. E. ;
Chang, C. L. ;
Chiu, I ;
Cho, H-M ;
Clocchiatti, A. ;
Crawford, T. M. ;
Crites, A. T. ;
de Haan, T. ;
Desai, S. ;
Dobbs, M. A. ;
Foley, R. J. ;
Forman, W. R. ;
Garmire, G. P. ;
George, E. M. ;
Gladders, M. D. ;
Gonzalez, A. H. ;
Grandis, S. ;
Gupta, N. ;
Halverson, N. W. ;
Hlavacek-Larrondo, J. ;
Hoekstra, H. ;
Holder, G. P. ;
Holzapfel, W. L. ;
Hou, Z. ;
Hrubes, J. D. ;
Huang, N. ;
Jones, C. ;
Khullar, G. ;
Knox, L. ;
Kraft, R. ;
Lee, A. T. ;
von der Linden, A. ;
Luong-Van, D. ;
Mantz, A. ;
Marrone, D. P. .
ASTROPHYSICAL JOURNAL, 2019, 878 (01)