Probing nuclear physics with supernova gravitational waves and machine learning

被引:3
|
作者
Mitra, A. [1 ,2 ,3 ,4 ]
Orel, D. [5 ]
Abylkairov, Y. S. [6 ]
Shukirgaliyev, B. [6 ,7 ,8 ,9 ]
Abdikamalov, E. [2 ,6 ]
机构
[1] Univ Illinois, Ctr Astrophys Surveys, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA
[2] Nazarbayev Univ, Dept Phys, 53 Kabanbay Batyr ave, Astana 010000, Kazakhstan
[3] Univ Illinois, Dept Astron, Urbana, IL 61801 USA
[4] Kazakh British Tech Univ, Sch Mat Sci & Green Technol, 59 Tole Bi St, Alma Ata 050000, Kazakhstan
[5] Nazarbayev Univ, Dept Comp Sci, 53 Kabanbay Batyr ave, Astana 010000, Kazakhstan
[6] Nazarbayev Univ, Energet Cosmos Lab, 53 Kabanbay Batyr ave, Astana 010000, Kazakhstan
[7] Zhubanov Univ, Heriot Watt Int Fac, 263 Zhubanov Bros str, Aktobe 030000, Kazakhstan
[8] Fesenkov Astrophys Inst, 23 Observ str, Alma Ata 050020, Kazakhstan
[9] Astana IT Univ, Dept Computat & Data Sci, 55-11 Mangilik El ave, Astana 010000, Kazakhstan
关键词
gravitational waves; methods: data analysis; transients: supernovae; CORE-COLLAPSE SUPERNOVA; EQUATION-OF-STATE; NEUTRINO-DRIVEN CONVECTION; GAMMA-RAY BURSTS; MASSIVE STARS; HYDRODYNAMICS CODE; ACCRETION SHOCK; SIMULATIONS; EXPLOSION; ROTATION;
D O I
10.1093/mnras/stae714
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Core-collapse supernovae (CCSNe) are sources of powerful gravitational waves (GWs). We assess the possibility of extracting information about the equation of state (EOS) of high density matter from the GW signal. We use the bounce and early post-bounce signals of rapidly rotating supernovae. A large set of GW signals is generated using general relativistic hydrodynamics simulations for various EOS models. The uncertainty in the electron capture rate is parametrized by generating signals for six different models. To classify EOSs based on the GW data, we train a convolutional neural network (CNN) model. Even with the uncertainty in the electron capture rates, we find that the CNN models can classify the EOSs with an average accuracy of about 87 per cent for a set of four distinct EOS models.
引用
收藏
页码:3582 / 3592
页数:11
相关论文
共 50 条
  • [41] Machine learning in nuclear physics at low and intermediate energies
    Wanbing He
    Qingfeng Li
    Yugang Ma
    Zhongming Niu
    Junchen Pei
    Yingxun Zhang
    Science China Physics, Mechanics & Astronomy, 2023, 66
  • [42] Probing the charge of compact objects with gravitational microlensing of gravitational waves
    Deka, Uddeepta
    Chakraborty, Sumanta
    Kapadia, Shasvath J.
    Shaikh, Md Arif
    Ajith, Parameswaran
    PHYSICAL REVIEW D, 2025, 111 (06)
  • [43] Testing BSM physics with gravitational waves
    Muia, F.
    Quevedo, F.
    Schachner, A.
    Villa, G.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2023, (09):
  • [44] Physics, Astrophysics and Cosmology with Gravitational Waves
    Sathyaprakash, B. S.
    Schutz, Bernard F.
    LIVING REVIEWS IN RELATIVITY, 2009, 12
  • [45] Exploring fundamental physics with gravitational waves
    Kobakhidze, Archil
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2017, 32 (28-29):
  • [46] Physics, Astrophysics and Cosmology with Gravitational Waves
    B. S. Sathyaprakash
    Bernard F. Schutz
    Living Reviews in Relativity, 2009, 12
  • [47] Universality in supernova gravitational waves with protoneutron star properties
    Sotani, Hajime
    Muller, Bernhard
    Takiwaki, Tomoya
    PHYSICAL REVIEW D, 2024, 109 (12)
  • [48] Constraint on the equation of state via supernova gravitational waves
    Sotani, Hajime
    Kuroda, Takami
    Takiwaki, Tomoya
    Kotake, Kei
    15TH MARCEL GROSSMANN MEETING, PT A, 2022, : 1572 - 1575
  • [49] Probing Nuclear Symmetry Energy and its Imprints on Properties of Nuclei, Nuclear Reactions, Neutron Stars and Gravitational Waves
    Li, Bao-An
    Chen, Lie-Wen
    Fattoyev, Farrukh J.
    Newton, William G.
    Xu, Chang
    INTERNATIONAL SUMMER SCHOOL FOR ADVANCED STUDIES DYNAMICS OF OPEN NUCLEAR SYSTEMS (PREDEAL12), 2013, 413
  • [50] Machine learning gravitational waves from binary black hole mergers
    Schmidt, Stefano
    Breschi, Matteo
    Gamba, Rossella
    Pagano, Giulia
    Rettegno, Piero
    Riemenschneider, Gunnar
    Bernuzzi, Sebastiano
    Nagar, Alessandro
    Del Pozzo, Walter
    PHYSICAL REVIEW D, 2021, 103 (04)