Probing nuclear physics with supernova gravitational waves and machine learning

被引:3
|
作者
Mitra, A. [1 ,2 ,3 ,4 ]
Orel, D. [5 ]
Abylkairov, Y. S. [6 ]
Shukirgaliyev, B. [6 ,7 ,8 ,9 ]
Abdikamalov, E. [2 ,6 ]
机构
[1] Univ Illinois, Ctr Astrophys Surveys, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA
[2] Nazarbayev Univ, Dept Phys, 53 Kabanbay Batyr ave, Astana 010000, Kazakhstan
[3] Univ Illinois, Dept Astron, Urbana, IL 61801 USA
[4] Kazakh British Tech Univ, Sch Mat Sci & Green Technol, 59 Tole Bi St, Alma Ata 050000, Kazakhstan
[5] Nazarbayev Univ, Dept Comp Sci, 53 Kabanbay Batyr ave, Astana 010000, Kazakhstan
[6] Nazarbayev Univ, Energet Cosmos Lab, 53 Kabanbay Batyr ave, Astana 010000, Kazakhstan
[7] Zhubanov Univ, Heriot Watt Int Fac, 263 Zhubanov Bros str, Aktobe 030000, Kazakhstan
[8] Fesenkov Astrophys Inst, 23 Observ str, Alma Ata 050020, Kazakhstan
[9] Astana IT Univ, Dept Computat & Data Sci, 55-11 Mangilik El ave, Astana 010000, Kazakhstan
关键词
gravitational waves; methods: data analysis; transients: supernovae; CORE-COLLAPSE SUPERNOVA; EQUATION-OF-STATE; NEUTRINO-DRIVEN CONVECTION; GAMMA-RAY BURSTS; MASSIVE STARS; HYDRODYNAMICS CODE; ACCRETION SHOCK; SIMULATIONS; EXPLOSION; ROTATION;
D O I
10.1093/mnras/stae714
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Core-collapse supernovae (CCSNe) are sources of powerful gravitational waves (GWs). We assess the possibility of extracting information about the equation of state (EOS) of high density matter from the GW signal. We use the bounce and early post-bounce signals of rapidly rotating supernovae. A large set of GW signals is generated using general relativistic hydrodynamics simulations for various EOS models. The uncertainty in the electron capture rate is parametrized by generating signals for six different models. To classify EOSs based on the GW data, we train a convolutional neural network (CNN) model. Even with the uncertainty in the electron capture rates, we find that the CNN models can classify the EOSs with an average accuracy of about 87 per cent for a set of four distinct EOS models.
引用
收藏
页码:3582 / 3592
页数:11
相关论文
共 50 条
  • [21] Gravitational waves from supernova matter
    Scheidegger, S.
    Whitehouse, S. C.
    Kaeppeli, R.
    Liebendoerfer, M.
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (11)
  • [22] Universal relation for supernova gravitational waves
    Sotani, Hajime
    Takiwaki, Tomoya
    Togashi, Hajime
    PHYSICAL REVIEW D, 2021, 104 (12)
  • [23] Evaluating machine learning models for supernova gravitational wave signal classification
    Abylkairov, Y. Sultan
    Edwards, Matthew C.
    Orel, Daniil
    Mitra, Ayan
    Shukirgaliyev, Bekdaulet
    Abdikamalov, Ernazar
    Machine Learning: Science and Technology, 2024, 5 (04):
  • [24] Nuclear input in supernova physics
    Langanke, K
    NUCLEAR PHYSICS A, 1997, 621 (1-2) : C351 - C358
  • [25] Nuclear input in supernova physics
    Langanke, K.
    Nuclear Physics, Section A, 1997, 621 (1-2):
  • [26] Machine learning techniques for gravitational waves data analysis
    Mobilia, L.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2025, 48 (03):
  • [27] Deep learning algorithms for gravitational waves core-collapse supernova detection
    Lopez, M.
    Drago, M.
    Di Palma, I
    Ricci, F.
    Cerda-Duran, P.
    2021 INTERNATIONAL CONFERENCE ON CONTENT-BASED MULTIMEDIA INDEXING (CBMI), 2021, : 153 - 158
  • [28] Gravitational Waves: Physics at the Extreme
    Van den Brand, Jo
    EUROPEAN REVIEW, 2018, 26 (01) : 90 - 99
  • [29] Interaction of supernova neutrinos with stochastic gravitational waves
    Dvornikov, Maxim
    PHYSICAL REVIEW D, 2021, 104 (04)
  • [30] Probing the seesaw scale with gravitational waves
    Okada, Nobuchika
    Seto, Osamu
    PHYSICAL REVIEW D, 2018, 98 (06)