Probing nuclear physics with supernova gravitational waves and machine learning

被引:3
|
作者
Mitra, A. [1 ,2 ,3 ,4 ]
Orel, D. [5 ]
Abylkairov, Y. S. [6 ]
Shukirgaliyev, B. [6 ,7 ,8 ,9 ]
Abdikamalov, E. [2 ,6 ]
机构
[1] Univ Illinois, Ctr Astrophys Surveys, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA
[2] Nazarbayev Univ, Dept Phys, 53 Kabanbay Batyr ave, Astana 010000, Kazakhstan
[3] Univ Illinois, Dept Astron, Urbana, IL 61801 USA
[4] Kazakh British Tech Univ, Sch Mat Sci & Green Technol, 59 Tole Bi St, Alma Ata 050000, Kazakhstan
[5] Nazarbayev Univ, Dept Comp Sci, 53 Kabanbay Batyr ave, Astana 010000, Kazakhstan
[6] Nazarbayev Univ, Energet Cosmos Lab, 53 Kabanbay Batyr ave, Astana 010000, Kazakhstan
[7] Zhubanov Univ, Heriot Watt Int Fac, 263 Zhubanov Bros str, Aktobe 030000, Kazakhstan
[8] Fesenkov Astrophys Inst, 23 Observ str, Alma Ata 050020, Kazakhstan
[9] Astana IT Univ, Dept Computat & Data Sci, 55-11 Mangilik El ave, Astana 010000, Kazakhstan
关键词
gravitational waves; methods: data analysis; transients: supernovae; CORE-COLLAPSE SUPERNOVA; EQUATION-OF-STATE; NEUTRINO-DRIVEN CONVECTION; GAMMA-RAY BURSTS; MASSIVE STARS; HYDRODYNAMICS CODE; ACCRETION SHOCK; SIMULATIONS; EXPLOSION; ROTATION;
D O I
10.1093/mnras/stae714
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Core-collapse supernovae (CCSNe) are sources of powerful gravitational waves (GWs). We assess the possibility of extracting information about the equation of state (EOS) of high density matter from the GW signal. We use the bounce and early post-bounce signals of rapidly rotating supernovae. A large set of GW signals is generated using general relativistic hydrodynamics simulations for various EOS models. The uncertainty in the electron capture rate is parametrized by generating signals for six different models. To classify EOSs based on the GW data, we train a convolutional neural network (CNN) model. Even with the uncertainty in the electron capture rates, we find that the CNN models can classify the EOSs with an average accuracy of about 87 per cent for a set of four distinct EOS models.
引用
收藏
页码:3582 / 3592
页数:11
相关论文
共 50 条
  • [1] Exploring supernova gravitational waves with machine learning
    Mitra, A.
    Shukirgaliyev, B.
    Abylkairov, Y. S.
    Abdikamalov, E.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 520 (02) : 2473 - 2483
  • [2] Probing Accretion Physics with Gravitational Waves
    Speri, Lorenzo
    Antonelli, Andrea
    Sberna, Laura
    Babak, Stanislav
    Barausse, Enrico
    Gair, Jonathan R.
    Katz, Michael L.
    PHYSICAL REVIEW X, 2023, 13 (02)
  • [3] Gravitational waves: Probing the extrenies of physics
    Andersson, N
    NEW WORLDS IN ASTROPARTICLE PHYSICS, 2003, : 28 - 49
  • [4] Probing the physics of neutron stars with gravitational waves
    Ferrari, V.
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (19)
  • [5] Probing the core-collapse supernova mechanism with gravitational waves
    Ott, Christian D.
    CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (20)
  • [6] Inferring core-collapse supernova physics with gravitational waves
    Logue, J.
    Ott, C. D.
    Heng, I. S.
    Kalmus, P.
    Scargill, J. H. C.
    PHYSICAL REVIEW D, 2012, 86 (04):
  • [7] Probing fundamental physics with gravitational waves: The next generation
    Perkins, Scott E.
    Yunes, Nicolas
    Berti, Emanuele
    PHYSICAL REVIEW D, 2021, 103 (04)
  • [8] Probing the early Universe with axion physics and gravitational waves
    Ramberg, Nicklas
    Visinelli, Luca
    PHYSICAL REVIEW D, 2019, 99 (12)
  • [9] Probing supernova physics with neutrinos
    Tomàs, R
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2005, 143 : 573 - 573
  • [10] Supernova Neutrinos and Gravitational Waves
    Pagliaroli, G.
    Vissani, F.
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2011, 217 : 278 - 280