Strong Coupling Between in-Fiber Microcavity and Single Quantum Emitter for Long-Distance Quantum Communication

被引:0
作者
Yu, Yang [1 ]
Li, Chunran [1 ]
Yu, Yanan [1 ]
Tian, Nong [1 ]
Yan, Haochen [2 ]
Luo, Jianyi [1 ]
Xiao, Ting-Hui [3 ,4 ,5 ]
机构
[1] Wuyi Univ, Sch Appl Phys & Mat, Jiangmen 529020, Peoples R China
[2] Max Planck Inst, Sci Light, D-91058 Erlangen, Germany
[3] Zhengzhou Univ, Sch Phys & Microelect, Henan Key Lab Diamond Optoelect Mat & Devices, Zhengzhou 450052, Peoples R China
[4] Henan Acad Sci, Inst Quantum Mat & Phys, Zhengzhou 450046, Peoples R China
[5] Univ Tokyo, Sch Sci, Dept Chem, Tokyo 1130033, Japan
基金
中国国家自然科学基金;
关键词
Microcavities; Couplings; Electric fields; Photonics; Optical fiber communication; Q-factor; Resonant frequency; Microcavity; optical fiber; strong coupling; PHOTON SOURCES; DOT; EFFICIENCY; BAND;
D O I
10.1109/JLT.2023.3331237
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
High-performance single-photon sources (SPSs) are essential components for quantum information technology and have been realized by strong coupling between a single quantum emitter and an optical cavity. However, the configurations of conventional SPSs are not ideal for long-distance quantum communication as they are intrinsically incompatible with optical fibers. Here we propose and design a strong-coupling system based on a single quantum emitter directly coupled with an in-fiber microcavity. The in-fiber microcavity not only achieves a high coupling efficiency of 83% and a high Purcell factor of 360, but also pushes the coupling system to enter the strong-coupling region with a vacuum Rabi splitting up to 4.35 meV. This enables a high quantum efficiency of 99% for a SPS. Our work presents a promising platform for realizing high-performance SPSs for long-distance quantum communication.
引用
收藏
页码:2111 / 2117
页数:7
相关论文
共 51 条
[1]   Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots -: art. no. 041308 [J].
Bayer, M ;
Forchel, A .
PHYSICAL REVIEW B, 2002, 65 (04) :1-4
[2]  
Bennett C. H., 1992, Journal of Cryptology, V5, P3, DOI 10.1007/BF00191318
[3]   Experimental quantum teleportation [J].
Bouwmeester, D ;
Pan, JW ;
Mattle, K ;
Eibl, M ;
Weinfurter, H ;
Zeilinger, A .
NATURE, 1997, 390 (6660) :575-579
[4]   Quantum dot single-photon emission coupled into single-mode fibers with 3D printed micro-objectives [J].
Bremer, Lucas ;
Weber, Ksenia ;
Fischbach, Sarah ;
Thiele, Simon ;
Schmidt, Marco ;
Kaganskiy, Arsenty ;
Rodt, Sven ;
Herkommer, Alois ;
Sartison, Marc ;
Portalupi, Simone Luca ;
Michler, Peter ;
Giessen, Harald ;
Reitzenstein, Stephan .
APL PHOTONICS, 2020, 5 (10)
[5]   Auxiliary-cavity-assisted vacuum Rabi splitting of a semiconductor quantum dot in a photonic crystal nanocavity [J].
Chen, Hua-Jun .
PHOTONICS RESEARCH, 2018, 6 (12) :1171-1176
[6]   High-fidelity, low-latency polarization quantum state transmissions over a hollow-core conjoined-tube fiber at around 800 nm [J].
Chen, Xinyu ;
Ding, Wei ;
Wang, Ying-Ying ;
Gao, Shou-Fei ;
Xu, Feixiang ;
Xu, Huichao ;
Hong, Yi-Feng ;
Sun, Yi-Zhi ;
Wang, Pu ;
Lu, Yan-Qing ;
Zhang, Lijian .
PHOTONICS RESEARCH, 2021, 9 (04) :460-470
[7]   An integrated space-to-ground quantum communication network over 4,600 kilometres [J].
Chen, Yu-Ao ;
Zhang, Qiang ;
Chen, Teng-Yun ;
Cai, Wen-Qi ;
Liao, Sheng-Kai ;
Zhang, Jun ;
Chen, Kai ;
Yin, Juan ;
Ren, Ji-Gang ;
Chen, Zhu ;
Han, Sheng-Long ;
Yu, Qing ;
Liang, Ken ;
Zhou, Fei ;
Yuan, Xiao ;
Zhao, Mei-Sheng ;
Wang, Tian-Yin ;
Jiang, Xiao ;
Zhang, Liang ;
Liu, Wei-Yue ;
Li, Yang ;
Shen, Qi ;
Cao, Yuan ;
Lu, Chao-Yang ;
Shu, Rong ;
Wang, Jian-Yu ;
Li, Li ;
Liu, Nai-Le ;
Xu, Feihu ;
Wang, Xiang-Bin ;
Peng, Cheng-Zhi ;
Pan, Jian-Wei .
NATURE, 2021, 589 (7841) :214-+
[8]   Quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime [J].
Cui, GQ ;
Raymer, MG .
OPTICS EXPRESS, 2005, 13 (24) :9660-9665
[9]   Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide [J].
Daveau, Raphael S. ;
Balram, Krishna C. ;
Pregnolato, Tommaso ;
Liu, Jin ;
Lee, Eun H. ;
Song, Jin D. ;
Verma, Varun ;
Mirin, Richard ;
Nam, Sae Woo ;
Midolo, Leonardo ;
Stobbe, Soren ;
Srinivasan, Kartik ;
Lodahl, Peter .
OPTICA, 2017, 4 (02) :178-184
[10]   Semiconductor quantum dots: Technological progress and future challenges [J].
de Arquer, F. Pelayo Garcia ;
Talapin, Dmitri, V ;
Klimov, Victor, I ;
Arakawa, Yasuhiko ;
Bayer, Manfred ;
Sargent, Edward H. .
SCIENCE, 2021, 373 (6555) :640-+