共 50 条
Remarks on the Berestycki-Lions Conditions for the Existence of Solutions
被引:0
|作者:
Liu, Xiaoqi
[1
,2
]
Kang, Jincai
[1
]
Tang, Chunlei
[1
]
机构:
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Anyang Normal Univ, Sch Math & Stat, Anyang 455000, Peoples R China
来源:
FRONTIERS OF MATHEMATICS
|
2024年
/
19卷
/
04期
基金:
中国博士后科学基金;
中国国家自然科学基金;
关键词:
Schrodinger equation;
Berestycki-Lions conditions;
infinitely many solutions;
ground state solutions;
SCALAR FIELD-EQUATIONS;
D O I:
10.1007/s11464-022-0097-z
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper, we are concerned with the following Schrodinger equation -Delta u=g(u),x is an element of Double-struck capital RN.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ - \Delta u = g(u),\,\,\,\,\,\,x \in {\mathbb{R}<^>N}.$$\end{document} We give a new approach and a brief proof to show the existence of infinitely many solutions and ground state solutions with g satisfying the Berestycki-Lions conditions [Arch. Rational Mech. Anal., 1983, 82(4): 313-345, 347-357].
引用
收藏
页码:599 / 608
页数:10
相关论文