Remarks on the Berestycki-Lions Conditions for the Existence of Solutions

被引:0
|
作者
Liu, Xiaoqi [1 ,2 ]
Kang, Jincai [1 ]
Tang, Chunlei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Anyang Normal Univ, Sch Math & Stat, Anyang 455000, Peoples R China
来源
FRONTIERS OF MATHEMATICS | 2024年 / 19卷 / 04期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Schrodinger equation; Berestycki-Lions conditions; infinitely many solutions; ground state solutions; SCALAR FIELD-EQUATIONS;
D O I
10.1007/s11464-022-0097-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are concerned with the following Schrodinger equation -Delta u=g(u),x is an element of Double-struck capital RN.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ - \Delta u = g(u),\,\,\,\,\,\,x \in {\mathbb{R}<^>N}.$$\end{document} We give a new approach and a brief proof to show the existence of infinitely many solutions and ground state solutions with g satisfying the Berestycki-Lions conditions [Arch. Rational Mech. Anal., 1983, 82(4): 313-345, 347-357].
引用
收藏
页码:599 / 608
页数:10
相关论文
共 50 条