Failed zero forcing numbers of Kneser graphs, Johnson graphs, and hypercubes

被引:0
作者
Afzali, Fatemeh [1 ]
Ghodrati, Amir Hossein [1 ]
Maimani, Hamid Reza [1 ]
机构
[1] Shahid Rajaee Teacher Training Univ, Fac Sci, Dept Math, Tehran, Iran
关键词
Failed zero forcing number; Johnson graph; Kneser graph; Hypercube graph; MINIMUM RANK;
D O I
10.1007/s12190-024-02064-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} and an assignment of black and white colors to its vertices, the zero forcing color-change rule operates as follows: if a vertex u and all of its neighbors except v are black, then v is forced to change its color to black. A proper subset S of V is called a zero forcing set if by initially assigning the black vertices to be the elements of S and repeatedly applying this rule to G, all vertices are eventually forced to change their colors to black. Otherwise, S is called a failed zero forcing set. The maximum size of a failed zero forcing set of G is called the failed zero forcing number of G and is denoted by F(G). In this paper, we study the failed zero forcing numbers of three graph families: Kneser graphs K(n, r), Johnson graphs J(n, r), and hypercube graphs Qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_n$$\end{document} . Specifically, we prove that F(K(n,r))=nr-(r+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(K(n, r))=\left( {\begin{array}{c}n\\ r\end{array}}\right) -(r+2)$$\end{document}, for 2 <= r <= n-12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le r \le \frac{n-1}{2}$$\end{document}, F(J(n,r))=nr-(r+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(J(n, r))=\left( {\begin{array}{c}n\\ r\end{array}}\right) -(r+1)$$\end{document}, for 1 <= r <= n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le r \le \frac{n}{2}$$\end{document}, and F(Qn)=2n-n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(Q_n)=2<^>n - n$$\end{document}, for n >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2$$\end{document} .
引用
收藏
页码:2665 / 2675
页数:11
相关论文
共 9 条
[1]  
Allan P., 2022, ARXIV
[2]   Zero forcing sets and the minimum rank of graphs [J].
Barioli, Francesco ;
Barrett, Wayne ;
Butler, Steve ;
Cioaba, Sebastian M. ;
Cvetkovic, Dragos ;
Fallat, Shaun M. ;
Godsil, Chris ;
Haemers, Willem ;
Hogben, Leslie ;
Mikkelson, Rana ;
Narayan, Sivaram ;
Pryporova, Olga ;
Sciriha, Irene ;
So, Wasin ;
Stevanovic, Dragan ;
van der Holst, Hein ;
Vander Meulen, Kevin N. ;
Wehe, Amy Wangsness .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) :1628-1648
[3]   Zero forcing parameters and minimum rank problems [J].
Barioli, Francesco ;
Barrett, Wayne ;
Fallat, Shaun M. ;
Hall, H. Tracy ;
Hogben, Leslie ;
Shader, Bryan ;
van den Driessche, P. ;
van der Holst, Hein .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (02) :401-411
[4]   The minimum rank of symmetric matrices described by a graph: A survey [J].
Fallat, Shaun M. ;
Hogben, Leslie .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) :558-582
[5]  
Fallat SM., 2014, HDB LINEAR ALGEBRA, P1
[6]  
Fetcie K., 2015, Involve, V8, P99, DOI DOI 10.2140/INVOLVE.2015.8.99
[7]   All Graphs with a Failed Zero Forcing Number of Two [J].
Gomez, Luis ;
Rubi, Karla ;
Terrazas, Jorden ;
Narayan, Darren A. .
SYMMETRY-BASEL, 2021, 13 (11)
[8]   On the complexity of failed zero forcing [J].
Shitov, Yaroslav .
THEORETICAL COMPUTER SCIENCE, 2017, 660 :102-104
[9]  
Swanson N., 2023, Involve, V16, P493, DOI [10.2140/involve.2023.16.493, DOI 10.2140/INVOLVE.2023.16.493]