On vertex connectivity of zero-divisor graphs of finite commutative rings

被引:1
作者
Chattopadhyay, Sriparna [1 ]
Patra, Kamal Lochan [2 ]
Sahoo, Binod Kumar [2 ]
机构
[1] Natl Inst Adv Mfg Technol, Dept Appl Sci & Humanities, Ranchi 834003, Jharkhand, India
[2] Homi Bhabha Natl Inst, Natl Inst Sci Educ & Res Bhubaneswar, Sch Math Sci, OCC, Khurja 752050, Odisha, India
关键词
Local principal ideal ring; Generalized join graph; Zero-divisor graph; Compressed zero-divisor graph; Vertex connectivity;
D O I
10.1007/s10801-024-01314-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a finite commutative ring with identity. We study the structure of the zero-divisor graph of R and then determine its vertex connectivity when: (i) R is a local principal ideal ring, and (ii) R is a finite direct product of local principal ideal rings. For such rings R, we also characterize the vertices of minimum degree and the minimum cut-sets of the zero-divisor graph of R.
引用
收藏
页码:955 / 969
页数:15
相关论文
共 26 条
[1]   On the signless Laplacian and normalized Laplacian spectrum of the zero divisor graphs [J].
Afkhami, Mojgan ;
Barati, Zahra ;
Khashyarmanesh, Kazem .
RICERCHE DI MATEMATICA, 2022, 71 (02) :349-365
[2]  
Akhtar R, 2016, INVOLVE, V9, P415, DOI 10.2140/involve.2016.9.415
[3]  
Anderson D.F., 2011, Commutative Algebra-Noetherian and Non-Noetherian Perspectives, P23
[4]   Some remarks on the compressed zero-divisor graph [J].
Anderson, David F. ;
LaGrange, John D. .
JOURNAL OF ALGEBRA, 2016, 447 :297-321
[5]   Commutative Boolean monoids, reduced rings, and the compressed zero-divisor graph [J].
Anderson, David F. ;
LaGrange, John D. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2012, 216 (07) :1626-1636
[6]   The zero-divisor graph of a commutative ring [J].
Anderson, DF ;
Livingston, PS .
JOURNAL OF ALGEBRA, 1999, 217 (02) :434-447
[7]  
Anderson DF., 2021, Graphs from Rings, DOI [10.1007/978-3-030-88410-9, DOI 10.1007/978-3-030-88410-9]
[8]   The Wiener index of the zero-divisor graph of Zn [J].
Asir, T. ;
Rabikka, V .
DISCRETE APPLIED MATHEMATICS, 2022, 319 :461-471
[9]   CUT STRUCTURES IN ZERO-DIVISOR GRAPHS OF COMMUTATIVE RINGS [J].
Axtell, M. ;
Baeth, N. ;
Stickles, J. .
JOURNAL OF COMMUTATIVE ALGEBRA, 2016, 8 (02) :143-171
[10]   On the adjacency spectrum of zero divisor graph of ring Zn [J].
Bajaj, Saraswati ;
Panigrahi, Pratima .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (10)