Progressive Frame-Proposal Mining for Weakly Supervised Video Object Detection

被引:4
作者
Han, Mingfei [1 ]
Wang, Yali [2 ,3 ]
Li, Mingjie [4 ]
Chang, Xiaojun [1 ]
Yang, Yi [5 ]
Qiao, Yu [2 ,3 ]
机构
[1] Univ Technol Sydney, Australian Artificial Intelligence Inst, Fac Engn & Informat Technol, ReLER Lab, Ultimo, NSW 2007, Australia
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[3] Shanghai Artificial Intelligence Lab, Shanghai 202150, Peoples R China
[4] Stanford Univ, Dept Radiat Oncol, Stanford, CA 94305 USA
[5] Zhejiang Univ, Sch Comp Sci, Hangzhou 310000, Peoples R China
基金
澳大利亚研究理事会;
关键词
Proposals; Object detection; Detectors; Annotations; Task analysis; Training; Benchmark testing; Video object detection; weakly supervised learning; holistic-view refinement;
D O I
10.1109/TIP.2024.3364536
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we focus on the weakly supervised video object detection problem, where each training video is only tagged with object labels, without any bounding box annotations of objects. To effectively train object detectors from such weakly-annotated videos, we propose a Progressive Frame-Proposal Mining (PFPM) framework by exploiting discriminative proposals in a coarse-to-fine manner. First, we design a flexible Multi-Level Selection (MLS) scheme, with explicit guidance of video tags. By selecting object-relevant frames and mining important proposals from these frames, the proposed MLS can effectively reduce frame redundancy as well as improve proposal effectiveness to boost weakly-supervised detectors. Moreover, we develop a novel Holistic-View Refinement (HVR) scheme, which can globally evaluate importance of proposals among frames, and thus correctly refine pseudo ground truth boxes for training video detectors in a self-supervised manner. Finally, we evaluate the proposed PFPM on a large-scale benchmark for video object detection, on ImageNet VID, under the setting of weak annotations. The experimental results demonstrate that our PFPM significantly outperforms the state-of-the-art weakly-supervised detectors.
引用
收藏
页码:1560 / 1573
页数:14
相关论文
共 50 条
  • [31] Enhanced Spatial Feature Learning for Weakly Supervised Object Detection
    Wu, Zhihao
    Wen, Jie
    Xu, Yong
    Yang, Jian
    Li, Xuelong
    Zhang, David
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (01) : 961 - 972
  • [32] WSODet: A Weakly Supervised Oriented Detector for Aerial Object Detection
    Tan, Zhiwen
    Jiang, Zhiguo
    Guo, Chen
    Zhang, Haopeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [33] BatchNorm-Based Weakly Supervised Video Anomaly Detection
    Zhou, Yixuan
    Qu, Yi
    Xu, Xing
    Shen, Fumin
    Song, Jingkuan
    Tao Shen, Heng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (12) : 13642 - 13654
  • [34] Weakly Supervised Object Detection in Chest X-Rays With Differentiable ROI Proposal Networks and Soft ROI Pooling
    Mueller, Philip
    Meissen, Felix
    Kaissis, Georgios
    Rueckert, Daniel
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2025, 44 (01) : 221 - 231
  • [35] Part-Aware Fine-Grained Object Categorization Using Weakly Supervised Part Detection Network
    Zhang, Yabin
    Jia, Kui
    Wang, Zhixin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (05) : 1345 - 1357
  • [36] Weakly Supervised RGB-D Salient Object Detection With Prediction Consistency Training and Active Scribble Boosting
    Xu, Yunqiu
    Yu, Xin
    Zhang, Jing
    Zhu, Linchao
    Wang, Dadong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 2148 - 2161
  • [37] Incorporating the Completeness and Difficulty of Proposals Into Weakly Supervised Object Detection in Remote Sensing Images
    Qian, Xiaoliang
    Huo, Yu
    Cheng, Gong
    Yao, Xiwen
    Li, Ke
    Ren, Hangli
    Wang, Wei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 1902 - 1911
  • [38] A Weakly-Supervised Cross-Domain Query Framework for Video Camouflage Object Detection
    Lu, Zelin
    Xie, Liang
    Zhao, Xing
    Xu, Binwei
    Liang, Haoran
    Liang, Ronghua
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (02) : 1506 - 1518
  • [39] Exploiting Web Images for Weakly Supervised Object Detection
    Tao, Qingyi
    Yang, Hao
    Cai, Jianfei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (05) : 1135 - 1146
  • [40] Dynamic sample weighting for weakly supervised object detection
    Li, Xuewei
    Yi, Song
    Zhang, Ruixuan
    Fu, Xuzhou
    Jiang, Han
    Wang, Chenhan
    Liu, Zhiqiang
    Gao, Jie
    Yu, Jian
    Yu, Mei
    Yu, Ruiguo
    IMAGE AND VISION COMPUTING, 2022, 122