Understanding the high-temperature oxidation resistance of heat-resistant austenitic stainless steel with gradient nanostructure

被引:17
作者
Wei, L. L. [1 ,2 ,3 ]
Wang, Y. G. [2 ]
Misra, R. D. K. [4 ]
Chen, J. [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
[2] Spallat Neutron Source Sci Ctr, Dongguan 523803, Peoples R China
[3] Ctr Excellence Adv Mat, Dongguan 523808, Peoples R China
[4] Univ Texas El Paso, Dept Met Mat & Biomed Engn, Lab Excellence Adv Steel Res, El Paso, TX 79968 USA
基金
中国国家自然科学基金;
关键词
SMRT; Gradient nanostructured; Heat -resistant stainless steel; Oxidation resistance; Precipitates; Diffusivity; BREAKAWAY OXIDATION; EXHAUST-GAS; DEGREES-C; BEHAVIOR; ALLOYS; GROWTH; SCALE; WATER;
D O I
10.1016/j.corsci.2024.111966
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The underlying high-temperature oxidation mechanisms of the heat-resistant austenitic stainless steel with gradient nanostructured surface layer is revealed through systematic analysis of the microstructure and composition. Nanoscale oxide grains and high-density grain boundaries promoted the formation of pronounced spinel oxides, which suppressed elemental diffusion and CrO3 volatilization. High level of residual stress in the GNS layer facilitated the formation of high-density precipitates at the oxide/matrix interface and grain boundaries, which hindered the growth of oxide scale and reactive elements diffusion. The enhanced high-temperature oxidation resistance resulted from the synergistic combination of spinel oxides, precipitates, and high-density grain boundaries.
引用
收藏
页数:18
相关论文
共 51 条
[1]   Influence of Surface Mechanical Attrition Treatment on the oxidation behaviour of 316L stainless steel [J].
Benafia, S. ;
Retraint, D. ;
Brou, S. Yapi ;
Panicaud, B. ;
Poussard, J. L. Grosseau .
CORROSION SCIENCE, 2018, 136 :188-200
[2]   Modelling of High Temperature Oxidation of Alumina-Forming Single-Crystal Nickel-Base Superalloys [J].
Bensch, M. ;
Sato, A. ;
Warnken, N. ;
Affeldt, E. ;
Reed, R. C. ;
Glatzel, U. .
ACTA MATERIALIA, 2012, 60 (15) :5468-5480
[3]   Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni [J].
Biesinger, Mark C. ;
Payne, Brad P. ;
Grosvenor, Andrew P. ;
Lau, Leo W. M. ;
Gerson, Andrea R. ;
Smart, Roger St. C. .
APPLIED SURFACE SCIENCE, 2011, 257 (07) :2717-2730
[4]   Breakaway oxidation behaviour of ferritic stainless steels at 1150 °C in humid air [J].
Cheng, Xiawei ;
Jiang, Zhengyi ;
Monaghan, Brian J. ;
Wei, Dongbin ;
Longbottom, Raymond J. ;
Zhao, Jingwei ;
Peng, Jianguo ;
Luo, Ming ;
Ma, Li ;
Luo, Shuzheng ;
Jiang, Laizhu .
CORROSION SCIENCE, 2016, 108 :11-22
[5]   Extra strengthening and work hardening in gradient nanotwinned metals [J].
Cheng, Zhao ;
Zhou, Haofei ;
Lu, Qiuhong ;
Gao, Huajian ;
Lu, Lei .
SCIENCE, 2018, 362 (6414) :559-+
[6]   Morphology-controlled growth of ZnO nanostructures using microwave irradiation: from basic to complex structures [J].
Cho, Seungho ;
Jung, Seung-Ho ;
Lee, Kun-Hong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (33) :12769-12776
[7]   Role of Elemental Segregation on the Oxidation Behavior of Additively Manufactured Alloy 625 [J].
de Leon Nope, G. ;
Wang, G. ;
Alvarado-Orozco, J. M. ;
Gleeson, B. .
JOM, 2022, 74 (04) :1698-1706
[8]   High-Temperature Oxidation Kinetics and Behavior of Ti-6Al-4V Alloy [J].
Dong, Entao ;
Yu, Wei ;
Cai, Qingwu ;
Cheng, Lei ;
Shi, Jiaxin .
OXIDATION OF METALS, 2017, 88 (5-6) :719-732
[9]   Martensitic transformation dominated tensile plastic deformation of nanograins in a gradient nanostructured 316L stainless steel [J].
Fang, T. H. ;
Tao, N. R. .
ACTA MATERIALIA, 2023, 248
[10]   Mechanism of breakaway oxidation of Fe-Cr and Fe-Cr-Ni alloys in dry and wet carbon dioxide [J].
Gheno, Thomas ;
Monceau, Daniel ;
Young, David J. .
CORROSION SCIENCE, 2012, 64 :222-233