Classification of Biological Scatters Using Polarimetric Weather Radar

被引:7
作者
Hu, Cheng [1 ,2 ,3 ,4 ]
Sun, Zhuoran [1 ,2 ,3 ,4 ]
Cui, Kai [1 ,2 ,3 ,4 ]
Mao, Huafeng [1 ,2 ,3 ,4 ]
Wang, Rui [1 ,2 ,3 ,4 ]
Kou, Xiao [1 ,2 ,3 ,4 ]
Wu, Dongli [5 ]
Xia, Fan [6 ,7 ]
机构
[1] Beijing Inst Technol, Radar Technol Res Inst, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[3] Minist Educ, Beijing Inst Technol, Key Lab Elect & Informat Technol Satellite Nav, Beijing 100081, Peoples R China
[4] Beijing Inst Technol, Adv Technol Res Inst, Jinan 250300, Peoples R China
[5] China Meteorol Adm, Meteorol Observat Ctr, Beijing 100081, Peoples R China
[6] Key Lab Meteorol Disaster Prevent & Mitigat Shando, Jinan 250031, Peoples R China
[7] Shandong Inst Meteorol Sci, Jinan 250031, Peoples R China
基金
中国国家自然科学基金;
关键词
Radar; Birds; Radar polarimetry; Meteorological radar; Insects; Meteorology; Radar imaging; Biological scatters classification; bird migration; bird radar; polarimetric weather radar; random forest; MIGRATION; BIRD; PATTERNS; MACHINE;
D O I
10.1109/JSTARS.2024.3378801
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Weather radar holds the capability to monitor the extensive migration of bird and insect species. In particular, polarimetric weather radar can enhance aerial ecological monitoring by quantifying target shape through the measurement of polarization moments. This article introduces an intelligent algorithm to classify bird and insect migration using polarimetric weather radar data. A radar image dataset was formed by intentionally curating typical migratory data of birds and insects captured by the polarimetric weather radar. Next, point features and spatial texture features were extracted from the radar images in the dataset for training a classifier using a supervised learning approach, resulting in a classification accuracy of 93.56%. Furthermore, the importance of the features was analyzed, uncovering that the most influential attribute was the reflectivity factor at 33.83%, surpassing the cumulative influence of other dual-polarization moments. In addition, spatial textures also played an essential role for the classifier, collectively weighing 35.65%. Lastly, the proposed method was validated with bird radar data, attaining an accuracy level of 95.36%.
引用
收藏
页码:7436 / 7447
页数:12
相关论文
共 48 条
[1]   Animal Migration and Infectious Disease Risk [J].
Altizer, Sonia ;
Bartel, Rebecca ;
Han, Barbara A. .
SCIENCE, 2011, 331 (6015) :296-302
[2]   Migratory Animals Couple Biodiversity and Ecosystem Functioning Worldwide [J].
Bauer, S. ;
Hoye, B. J. .
SCIENCE, 2014, 344 (6179) :54-+
[3]   Random forest in remote sensing: A review of applications and future directions [J].
Belgiu, Mariana ;
Dragut, Lucian .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 114 :24-31
[4]  
Boere G.C., 2006, Waterbirds Around the World, P40
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]   Recent advances in classification of observations from dual polarization weather radars [J].
Chandrasekar, V. ;
Keranen, R. ;
Lim, S. ;
Moisseev, D. .
ATMOSPHERIC RESEARCH, 2013, 119 :97-111
[7]   Estimating animal densities in the aerosphere using weather radar: To Z or not to Z? [J].
Chilson, Phillip B. ;
Frick, Winifred F. ;
Stepanian, Phillip M. ;
Shipley, J. Ryan ;
Kunz, Thomas H. ;
Kelly, Jeffrey F. .
ECOSPHERE, 2012, 3 (08)
[8]   Deep-learning-based extraction of the animal migration patterns from weather radar images [J].
Cui, Kai ;
Hu, Cheng ;
Wang, Rui ;
Sui, Yi ;
Mao, Huafeng ;
Li, Huayu .
SCIENCE CHINA-INFORMATION SCIENCES, 2020, 63 (04)
[9]   Continental Patterns of Bird Migration Linked to Climate Variability [J].
Dezfuli, Amin ;
Horton, Kyle G. ;
Zuckerberg, Benjamin ;
Schubert, Siegfried D. ;
Bosilovich, Michael G. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2022, 103 (02) :E536-E547
[10]   bioRad: biological analysis and visualization of weather radar data [J].
Dokter, Adriaan M. ;
Desmet, Peter ;
Spaaks, Jurriaan H. ;
van Hoey, Stijn ;
Veen, Lourens ;
Verlinden, Liesbeth ;
Nilsson, Cecilia ;
Haase, Gunther ;
Leijnse, Hidde ;
Farnsworth, Andrew ;
Bouten, Willem ;
Shamoun-Baranes, Judy .
ECOGRAPHY, 2019, 42 (05) :852-860