Biquadratic element discrete duality finite volume method for on mesh

被引:0
作者
Pan, Kejia [1 ]
Wu, Xiaoxin [1 ]
Xu, Yufeng [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Discrete duality; Finite volume scheme; Quadrilateral meshes; Biquadratic element; Accuracy; DIFFUSION OPERATORS; DIFFERENTIAL-OPERATORS; QUADRILATERAL MESHES; FLUX APPROXIMATION; ELLIPTIC PROBLEMS; SCHEMES; EQUATIONS;
D O I
10.1016/j.jcp.2024.112857
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Nowadays numerical methods for handling partial differential equations is so vast that it is almost taken for granted. In this paper, we propose a discrete duality finite volume scheme with biquadratic elements and its application in solving two-dimensional elliptic equation on quadrilateral meshes. To test the robustness and efficiency of this method, we investigate several examples from physical and engineering fields with different parameters and coefficients. Numerical experiments, encompassing linear and nonlinear elliptic equations with constant or variable coefficients, reveal that the new method achieves optimal convergence in the continuous H-1-norm, with a 2nd-order convergence, and in the L-2-norm, with a 3rd-order convergence. Moreover, comparison with the existing biquadratic element finite volume scheme shows that the above method has an advantage of accuracy in the discrete L-infinity-norm on several distorted meshes.
引用
收藏
页数:16
相关论文
共 37 条
[1]   Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes [J].
Andreianov, Boris ;
Boyer, Franck ;
Hubert, Florence .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (01) :145-195
[2]  
CAI ZQ, 1991, NUMER MATH, V58, P713
[3]   A monotone nonlinear finite volume method for approximating diffusion operators on general meshes [J].
Camier, Jean-Sylvain ;
Hermeline, Francois .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2016, 107 (06) :496-519
[4]   IS 2K-CONJECTURE VALID FOR FINITE VOLUME METHODS? [J].
Cao, Waixiang ;
Zhang, Zhimin ;
Zou, Qingsong .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (02) :942-962
[5]  
Ciarlet PhilippeG., 1978, FINITE ELEMENT METHO, V4
[6]   Comparison of Numerical Solvers for Anisotropic Diffusion Equations Arising in Plasma Physics [J].
Crouseilles, Nicolas ;
Kuhn, Matthieu ;
Latu, Guillaume .
JOURNAL OF SCIENTIFIC COMPUTING, 2015, 65 (03) :1091-1128
[7]   GRADIENT SCHEMES: GENERIC TOOLS FOR THE NUMERICAL ANALYSIS OF DIFFUSION EQUATIONS [J].
Droniou, Jerome ;
Eymard, Robert ;
Herbin, Raphaele .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (03) :749-781
[8]   INTERIOR ESTIMATES OF FINITE VOLUME ELEMENT METHODS OVER QUADRILATERAL MESHES FOR ELLIPTIC EQUATIONS [J].
Guo, Li ;
Li, Hengguang ;
Zou, Qingsong .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (05) :2246-2265
[9]   Maximum-norms error estimates for high-order finite volume schemes over quadrilateral meshes [J].
He, Wenming ;
Zhang, Zhimin ;
Zou, Qingsong .
NUMERISCHE MATHEMATIK, 2018, 138 (02) :473-500
[10]   Approximating second-order vector differential operators on distorted meshes in two space dimensions [J].
Hermeline, F. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 76 (07) :1065-1089