Forecasting financial market structure from network features using machine learning

被引:0
作者
Castilho, Douglas [1 ,5 ]
Souza, Tharsis T. P. [2 ]
Kang, Soong Moon [3 ]
Gama, Joao [4 ]
de Carvalho, Andre C. P. L. F. [1 ]
机构
[1] Univ Sao Paulo, Inst Math & Comp Sci ICMC, Sao Carlos, Brazil
[2] Columbia Univ, New York, NY USA
[3] UCL, Sch Management, Gower St, London WC1E 6BT, England
[4] Univ Porto UP, Inst Syst & Comp Engn, Technol & Sci, Porto, Portugal
[5] Fed Inst South Minas Gerais IFSULDEMINAS, Lab Technol & Innovat LATIN, Pocos De Caldas, Brazil
关键词
Financial networks; Network link prediction; Information filtering networks; Correlation-based networks; Machine learning; Stock markets; LINK-PREDICTION-PROBLEM; ASSET TREES; INFORMATION; GRAPHS; TOOL;
D O I
10.1007/s10115-024-02095-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a model that forecasts market correlation structure from link- and node-based financial network features using machine learning. For such, market structure is modeled as a dynamic asset network by quantifying time-dependent co-movement of asset price returns across company constituents of major global market indices. We provide empirical evidence using three different network filtering methods to estimate market structure, namely Dynamic Asset Graph, Dynamic Minimal Spanning Tree and Dynamic Threshold Networks. Experimental results show that the proposed model can forecast market structure with high predictive performance with up to 40%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$40\%$$\end{document} improvement over a time-invariant correlation-based benchmark. Non-pair-wise correlation features showed to be important compared to traditionally used pair-wise correlation measures for all markets studied, particularly in the long-term forecasting of stock market structure. Evidence is provided for stock constituents of the DAX30, EUROSTOXX50, FTSE100, HANGSENG50, NASDAQ100 and NIFTY50 market indices. Findings can be useful to improve portfolio selection and risk management methods, which commonly rely on a backward-looking covariance matrix to estimate portfolio risk.
引用
收藏
页码:4497 / 4525
页数:29
相关论文
共 70 条
[1]   Friends and neighbors on the Web [J].
Adamic, LA ;
Adar, E .
SOCIAL NETWORKS, 2003, 25 (03) :211-230
[2]  
Al Hasan M., 2006, 30 WORKSH LINK AN CO, V30, P798
[3]  
[Anonymous], 2015, Sci. China Inf. Sci
[4]  
Aouay S, 2014, I C COMP SYST APPLIC, P523, DOI 10.1109/AICCSA.2014.7073243
[5]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[6]   Parsimonious modeling with information filtering networks [J].
Barfuss, Wolfram ;
Massara, Guido Previde ;
Di Matteo, T. ;
Aste, Tomaso .
PHYSICAL REVIEW E, 2016, 94 (06)
[7]   Fast unfolding of communities in large networks [J].
Blondel, Vincent D. ;
Guillaume, Jean-Loup ;
Lambiotte, Renaud ;
Lefebvre, Etienne .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
[8]   Topology of correlation-based minimal spanning trees in real and model markets [J].
Bonanno, G ;
Caldarelli, G ;
Lillo, F ;
Mantegna, RN .
PHYSICAL REVIEW E, 2003, 68 (04)
[9]   Networks of equities in financial markets [J].
Bonanno, G ;
Caldarelli, G ;
Lillo, F ;
Miccichè, S ;
Vandewalle, N ;
Mantegna, RN .
EUROPEAN PHYSICAL JOURNAL B, 2004, 38 (02) :363-371
[10]   The anatomy of a large-scale hypertextual Web search engine [J].
Brin, S ;
Page, L .
COMPUTER NETWORKS AND ISDN SYSTEMS, 1998, 30 (1-7) :107-117