A machine learning model to predict surgical site infection after surgery of lower extremity fractures

被引:4
作者
Gutierrez-Naranjo, Jose M. [1 ]
Moreira, Alvaro [2 ]
Valero-Moreno, Eduardo [1 ]
Bullock, Travis S. [1 ]
Ogden, Liliana A. [1 ]
Zelle, Boris A. [1 ]
机构
[1] UT Hlth San Antonio, Dept Orthopaed, San Antonio, TX 78229 USA
[2] UT Hlth San Antonio, Dept Pediat, San Antonio, TX 78229 USA
关键词
Machine learning; Postoperative infection; Risk score; Lower extremity; RISK-FACTORS; ANKLE FRACTURES; TIBIAL PLATEAU; ORTHOPEDIC TRAUMA; INTERNAL-FIXATION; DEEP INFECTION; OPEN REDUCTION; COMPLICATIONS; READMISSION; GUIDELINES;
D O I
10.1007/s00264-024-06194-5
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
PurposeThis study aimed to develop machine learning algorithms for identifying predictive factors associated with the risk of postoperative surgical site infection in patients with lower extremity fractures.MethodsA machine learning analysis was conducted on a dataset comprising 1,579 patients who underwent surgical fixation for lower extremity fractures to create a predictive model for risk stratification of postoperative surgical site infection. We evaluated different clinical and demographic variables to train four machine learning models (neural networks, boosted generalised linear model, na & iuml;ve bayes, and penalised discriminant analysis). Performance was measured by the area under the curve score, Youdon's index and Brier score. A multivariate adaptive regression splines (MARS) was used to optimise predictor selection.ResultsThe final model consisted of five predictors. (1) Operating room time, (2) ankle region, (3) open injury, (4) body mass index, and (5) age. The best-performing machine learning algorithm demonstrated a promising predictive performance, with an area under the ROC curve, Youdon's index, and Brier score of 77.8%, 62.5%, and 5.1%-5.6%, respectively.ConclusionThe proposed predictive model not only assists surgeons in determining high-risk factors for surgical site infections but also empowers patients to closely monitor these factors and take proactive measures to prevent complications. Furthermore, by considering the identified predictors, this model can serve as a reference for implementing preventive measures and reducing postoperative complications, ultimately enhancing patient outcomes. However, further investigations involving larger datasets and external validations are required to confirm the reliability and applicability of our model.
引用
收藏
页码:1887 / 1896
页数:10
相关论文
共 49 条
[1]   Is Operative Time a Predictor for Post-Operative Infection in Primary Total Knee Arthroplasty? [J].
Anis, Hiba K. ;
Sodhi, Nipun ;
Klika, Alison K. ;
Mont, Michael A. ;
Barsoum, Wael K. ;
Higuera, Carlos A. ;
Molloy, Robert M. .
JOURNAL OF ARTHROPLASTY, 2019, 34 (07) :S331-S336
[2]   Comparison of machine learning techniques to predict unplanned readmission following total shoulder arthroplasty [J].
Arvind, Varun ;
London, Daniel A. ;
Cirino, Carl ;
Keswani, Aakash ;
Cagle, Paul J. .
JOURNAL OF SHOULDER AND ELBOW SURGERY, 2021, 30 (02) :E50-E59
[3]   American College of Surgeons and Surgical Infection Society: Surgical Site Infection Guidelines, 2016 Update [J].
Ban, Kristen A. ;
Minei, Joseph P. ;
Laronga, Christine ;
Harbrecht, Brian G. ;
Jensen, Eric H. ;
Fry, Donald E. ;
Itani, Kamal M. F. ;
Dellinger, E. Patchen ;
Ko, Clifford Y. ;
Duane, Therese M. .
JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS, 2017, 224 (01) :59-74
[4]   Morbidity and Readmission After Open Reduction and Internal Fixation of Ankle Fractures Are Associated With Preoperative Patient Characteristics [J].
Basques, Bryce A. ;
Miller, Christopher P. ;
Golinvaux, Nicholas S. ;
Bohl, Daniel D. ;
Grauer, Jonathan N. .
CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 2015, 473 (03) :1133-1139
[5]   Surgical Risk Is Not Linear: Derivation and Validation of a Novel, User-friendly, and Machine-learning-based Predictive OpTimal Trees in Emergency Surgery Risk (POTTER) Calculator [J].
Bertsimas, Dimitris ;
Dunn, Jack ;
Velmahos, George C. ;
Kaafarani, Haytham M. A. .
ANNALS OF SURGERY, 2018, 268 (04) :574-583
[6]   A Machine Learning Algorithm to Identify Patients at Risk of Unplanned Subsequent Surgery After Intramedullary Nailing for Tibial Shaft Fractures [J].
Bhandari, Mohit ;
Bulstra, Anne Eva J. ;
Bzovsky, Sofia ;
Doornberg, Job N. ;
Goslings, J. Carel ;
Hendrickx, Laurent A. M. ;
Jaarsma, Ruurd L. ;
Jeray, Kyle J. ;
Kerkhoffs, Gino M. M. J. ;
Petrisor, Brad ;
Ring, David ;
Schemitsch, Emil H. ;
Swiontkowski, Marc ;
Sanders, David ;
Sprague, Sheila ;
Tornetta, Paul, III ;
Walter, Stephen D. ;
Heels-Ansdell, Diane ;
Buckingham, Lisa ;
Leece, Pamela ;
Viveiros, Helena ;
Mignott, Tashay ;
Ansell, Natalie ;
Sidorkewicz, Natalie ;
Agel, Julie ;
Bombardier, Claire ;
Berlin, Jesse A. ;
Bosse, Michael ;
Browner, Bruce ;
Gillespie, Brenda ;
Jones, Alan ;
O'Brien, Peter ;
Poolman, Rudolf ;
Macleod, Mark D. ;
Carey, Timothy ;
Leitch, Kellie ;
Bailey, Stuart ;
Gurr, Kevin ;
Konito, Ken ;
Bartha, Charlene ;
Low, Isolina ;
MacBean, Leila, V ;
Ramu, Mala ;
Reiber, Susan ;
Strapp, Ruth ;
Tieszer, Christina ;
Kreder, Hans J. ;
Stephen, David J. G. ;
Axelrod, Terry S. ;
Yee, Albert J. M. .
JOURNAL OF ORTHOPAEDIC TRAUMA, 2021, 35 (10) :E381-E388
[7]   Risk of Surgical Site Infections in OTA/AO Type C Tibial Plateau and Tibial Plafond Fractures: A Systematic Review and Meta-Analysis [J].
Bullock, Travis S. ;
Ornell, Samuel S. ;
Naranjo, Jose M. G. ;
Morton-Gonzaba, Nicholas ;
Ryan, Patrick ;
Petershack, Matthew ;
Salazar, Luis M. ;
Moreira, Alvaro ;
Zelle, Boris A. .
JOURNAL OF ORTHOPAEDIC TRAUMA, 2022, 36 (03) :111-117
[8]   Obesity is associated with increased postoperative complications after operative management of tibial shaft fractures [J].
Burrus, M. Tyrrell ;
Werner, Brian C. ;
Yarboro, Seth R. .
INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 2016, 47 (02) :465-470
[9]   Machine Learning in Orthopedics: A Literature Review [J].
Cabitza, Federico ;
Locoro, Angela ;
Banfi, Giuseppe .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2018, 6
[10]  
Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.7326/M14-0697, 10.1186/s12916-014-0241-z, 10.1002/bjs.9736, 10.1016/j.jclinepi.2014.11.010, 10.1038/bjc.2014.639, 10.1111/eci.12376, 10.1016/j.eururo.2014.11.025, 10.7326/M14-0698, 10.1136/bmj.g7594]