Prognostic value of combining clinical factors, 18F-FDG PET-based intensity, volumetric features, and deep learning predictor in patients with EGFR-mutated lung adenocarcinoma undergoing targeted therapies: a cross-scanner and temporal validation study

被引:2
作者
Lue, Kun-Han [1 ]
Chen, Yu-Hung [1 ,2 ,3 ]
Chu, Sung-Chao [3 ,4 ]
Lin, Chih-Bin [3 ,5 ]
Wang, Tso-Fu [3 ,4 ]
Liu, Shu-Hsin [1 ,2 ]
机构
[1] Tzu Chi Univ Sci & Technol, Dept Med Imaging & Radiol Sci, 880,Sec 2,Chien Kuo Rd, Hualien 970302, Taiwan
[2] Hualien Tzu Chi Hosp, Buddhist Tzu Chi Med Fdn, Dept Nucl Med, 707,Sec 3,Zhongyang Rd, Hualien 970473, Taiwan
[3] Tzu Chi Univ, Coll Med, Sch Med, 707,Sec 3,Zhongyang Rd, Hualien 970473, Taiwan
[4] Hualien Tzu Chi Hosp, Buddhist Tzu Chi Med Fdn, Dept Hematol & Oncol, Hualien, Taiwan
[5] Hualien Tzu Chi Hosp, Buddhist Tzu Chi Med Fdn, Dept Internal Med, Hualien, Taiwan
关键词
F-18-FDG PET; Lung adenocarcinoma; Epidermal growth factor receptor; Prognosis; Deep learning; CANCER; MANAGEMENT;
D O I
10.1007/s12149-024-01936-2
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objective To investigate the prognostic value of F-18-FDG PET-based intensity, volumetric features, and deep learning (DL) across different generations of PET scanners in patients with epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma receiving tyrosine kinase inhibitor (TKI) treatment. Methods We retrospectively analyzed the pre-treatment F-18-FDG PET of 217 patients with advanced-stage lung adenocarcinoma and actionable EGFR mutations who received TKI as first-line treatment. Patients were separated into analog (n = 166) and digital (n = 51) PET cohorts. F-18-FDG PET-derived intensity, volumetric features, ResNet-50 DL of the primary tumor, and clinical variables were used to predict progression-free survival (PFS). Independent prognosticators were used to develop prediction model. Model was developed and validated in the analog and digital PET cohorts, respectively. Results In the analog PET cohort, female sex, stage IVB status, exon 19 deletion, SUVmax, metabolic tumor volume, and positive DL prediction independently predicted PFS. The model devised from these six prognosticators significantly predicted PFS in the analog (HR = 1.319, p < 0.001) and digital PET cohorts (HR = 1.284, p = 0.001). Our model provided incremental prognostic value to staging status (c-indices = 0.738 vs. 0.558 and 0.662 vs. 0.598 in the analog and digital PET cohorts, respectively). Our model also demonstrated a significant prognostic value for overall survival (HR = 1.198, p < 0.001, c-index = 0.708 and HR = 1.256, p = 0.021, c-index = 0.664 in the analog and digital PET cohorts, respectively). Conclusions Combining F-18-FDG PET-based intensity, volumetric features, and DL with clinical variables may improve the survival stratification in patients with advanced EGFR-mutated lung adenocarcinoma receiving TKI treatment. Implementing the prediction model across different generations of PET scanners may be feasible and facilitate tailored therapeutic strategies for these patients.
引用
收藏
页码:647 / 658
页数:12
相关论文
共 54 条
  • [1] Afshar P, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-69106-8
  • [2] The Prognostic Value of 18F-FDG PET/CT Metabolic Parameters in Predicting Treatment Response Before EGFR TKI Treatment in Patients with Advanced Lung Adenocarcinoma
    Aguloglu, Nursin
    Akyol, Murat
    Komek, Halil
    Katgi, Nuran
    [J]. MOLECULAR IMAGING AND RADIONUCLIDE THERAPY, 2022, 31 (02) : 104 - 113
  • [3] Global Epidemiology of Lung Cancer
    Barta, Julie A.
    Powell, Charles A.
    Wisnivesky, Juan P.
    [J]. ANNALS OF GLOBAL HEALTH, 2019, 85 (01):
  • [4] Observed and relative survival trends of lung cancer: A systematic review of population-based cancer registration data
    Bi, Jing-Hao
    Tuo, Jia-Yi
    Xiao, Yu-Xuan
    Tang, Dan-Dan
    Zhou, Xiao-Hui
    Jiang, Yu-Fei
    Ji, Xiao-Wei
    Tan, Yu-Ting
    Yuan, Hui-Yun
    Xiang, Yong-Bing
    [J]. THORACIC CANCER, 2024, 15 (02) : 142 - 151
  • [5] FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0
    Boellaard, Ronald
    Delgado-Bolton, Roberto
    Oyen, Wim J. G.
    Giammarile, Francesco
    Tatsch, Klaus
    Eschner, Wolfgang
    Verzijlbergen, Fred J.
    Barrington, Sally F.
    Pike, Lucy C.
    Weber, Wolfgang A.
    Stroobants, Sigrid
    Delbeke, Dominique
    Donohoe, Kevin J.
    Holbrook, Scott
    Graham, Michael M.
    Testanera, Giorgio
    Hoekstra, Otto S.
    Zijlstra, Josee
    Visser, Eric
    Hoekstra, Corneline J.
    Pruim, Jan
    Willemsen, Antoon
    Arends, Bertjan
    Kotzerke, Joerg
    Bockisch, Andreas
    Beyer, Thomas
    Chiti, Arturo
    Krause, Bernd J.
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2015, 42 (02) : 328 - 354
  • [6] Using stacked deep learning models based on PET/CT images and clinical data to predict EGFR mutations in lung cancer
    Chen, Song
    Han, Xiangjun
    Tian, Guangwei
    Cao, Yu
    Zheng, Xuting
    Li, Xuena
    Li, Yaming
    [J]. FRONTIERS IN MEDICINE, 2022, 9
  • [7] Glucose metabolic heterogeneity correlates with pathological features and improves survival stratification of resectable lung adenocarcinoma
    Chen, Yu-Hung
    Chen, Yen-Chang
    Lue, Kun-Han
    Chu, Sung-Chao
    Chang, Bee-Song
    Wang, Ling-Yi
    Li, Ming-Hsun
    Lin, Chih-Bin
    [J]. ANNALS OF NUCLEAR MEDICINE, 2023, 37 (02) : 139 - 150
  • [8] Prognostic Value of Combing Primary Tumor and Nodal Glycolytic-Volumetric Parameters of 18F-FDG PET in Patients with Non-Small Cell Lung Cancer and Regional Lymph Node Metastasis
    Chen, Yu-Hung
    Chu, Sung-Chao
    Wang, Ling-Yi
    Wang, Tso-Fu
    Lue, Kun-Han
    Lin, Chih-Bin
    Chang, Bee-Song
    Liu, Dai-Wei
    Liu, Shu-Hsin
    Chan, Sheng-Chieh
    [J]. DIAGNOSTICS, 2021, 11 (06)
  • [9] Towards automatic pulmonary nodule management in lung cancer screening with deep learning
    Ciompi, Francesco
    Chung, Kaman
    van Riel, Sarah J.
    Setio, Arnaud Arindra Adiyoso
    Gerke, Paul K.
    Jacobs, Colin
    Scholten, Ernst Th.
    Schaefer-Prokop, Cornelia
    Wille, Mathilde M. W.
    Marchiano, Alfonso
    Pastorino, Ugo
    Prokop, Mathias
    van Ginneken, Bram
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [10] Usefulness of semi-automatic harmonization strategy of standardized uptake values for multicenter PET studies
    Daisaki, Hiromitsu
    Kitajima, Kazuhiro
    Nakajo, Masatoyo
    Watabe, Tadashi
    Ito, Kimiteru
    Sakamoto, Fumi
    Nakahara, Tadaki
    Ishibashi, Mana
    Toriihara, Akira
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)