A Lower Bound for Essential Covers of the Cube

被引:2
作者
Yehuda, Gal [1 ]
Yehudayoff, Amir [2 ]
机构
[1] Technion IIT, Dept Comp Sci, Haifa, Israel
[2] Technion IIT, Dept Math, Haifa, Israel
关键词
Boolean cube; Covering problems; Lower bounds;
D O I
10.1007/s00493-024-00093-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The amount of hyperplanes that are needed in order to cover the Boolean cube has been studied in various contexts. Linial and Radhakrishnan introduced the notion of essential covers. An essential cover is a collection of hyperplanes that form a minimal cover of the vertices of the hypercube, and every coordinate is influential in at least one of the hyperplanes. Linial and Radhakrishnan proved using algebraic tools that every essential cover of the n-cube must be of size at least Omega(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (\sqrt{n})$$\end{document}. We devise a stronger lower bound method, and show that the size of every essential cover is at least Omega(n0.52)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (n<^>{0.52})$$\end{document}. This result has implications in proof complexity, because essential covers have been used to prove lower bounds for several proof systems.
引用
收藏
页码:801 / 815
页数:15
相关论文
共 17 条
[1]   COVERING THE CUBE BY AFFINE HYPERPLANES [J].
ALON, N ;
FUREDI, Z .
EUROPEAN JOURNAL OF COMBINATORICS, 1993, 14 (02) :79-83
[2]   THE PLANK PROBLEM FOR SYMMETRICAL BODIES [J].
BALL, K .
INVENTIONES MATHEMATICAE, 1991, 104 (03) :535-543
[3]   A SOLUTION OF THE PLANK PROBLEM [J].
BANG, T .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 2 (06) :990-993
[4]  
Beame Paul, 2017, ARXIV
[5]   Covering all points except one [J].
Blokhuis, A. ;
Brouwer, A. E. ;
Szonyi, T. .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 32 (01) :59-66
[6]  
Dantchev Stefan, 2021, ARXIV
[7]   ON A LEMMA OF LITTLEWOOD AND OFFORD [J].
ERDOS, P .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1945, 51 (12) :898-902
[8]   Zero-sum problems and coverings by proper cosets [J].
Gao, WD ;
Geroldinger, A .
EUROPEAN JOURNAL OF COMBINATORICS, 2003, 24 (05) :531-549
[9]  
Lettl Gunter, 2004, ARXIV
[10]   Essential covers of the cube by hyperplanes [J].
Linial, N ;
Radhakrishnan, J .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2005, 109 (02) :331-338