Description of magnetic field lines without arcana

被引:1
作者
Escande, Dominique Franck [1 ,2 ]
Momo, Barbara [2 ]
机构
[1] Aix Marseille Univ, CNRS, PIIM, UMR 7345, F-13397 Marseille, France
[2] Univ Padua, Acciaierie Venete SpA, Consorzio RFX, ENEA,INFN,CNR, I-35127 Padua, Italy
关键词
Magnetic field lines; Variational principle; Hamiltonian mechanics; Magnetic coordinates; Magnetic island width; PERTURBATION-THEORY; STABILITY;
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This work is based on the variational principle for magnetic field lines introduced in 1983 by Cary and Littlejohn. The action principles for magnetic field lines and for Hamiltonian mechanics are recalled to be analogous. It is shown that the first one can be rigorously proved from first principles without analytical calculations. Not only the action principles are analogous, but also a change of canonical coordinates is recalled to be equivalent to a change of gauge. Furthermore, using the vector potential makes obvious the freedom in the choice of "time" for describing Hamiltonian dynamics. These features may be used for a new pedagogical and intuitive introduction to Hamiltonian mechanics. In the context of confined magnetic fields, the action principle for magnetic field lines makes practical calculations simpler and safer, with an intuitive background and allowing to keep a high degree of generality, as shown in the practical example of the calculation of the width of a magnetic island, analytically derived without any need of abstract Fourier components and independently of the choice of coordinates. Moreover, a new formula provides explicitly the Boozer and Hamada magnetic coordinates from action-angle coordinates.
引用
收藏
页数:48
相关论文
共 57 条
[1]  
Arnol'd VladimirIgorevich., 2013, MATH METHODS CLASSIC, V60
[2]   Numerical study of the resonant magnetic perturbations for Type I edge localized modes control in ITER [J].
Becoulet, M. ;
Nardon, E. ;
Huysmaws, G. ;
Zwingmann, W. ;
Thomas, P. ;
Lipa, M. ;
Moyer, R. ;
Evans, T. ;
Chuyanov, V. ;
Gribov, Y. ;
Poevoi, A. ;
Vayakis, G. ;
Federici, G. ;
Saibene, G. ;
Portone, A. ;
Loarte, A. ;
Doebert, C. ;
Gimblett, C. ;
Hastie, J. ;
Parail, V. .
NUCLEAR FUSION, 2008, 48 (02)
[3]   EVALUATION OF THE STRUCTURE OF ERGODIC FIELDS [J].
BOOZER, AH .
PHYSICS OF FLUIDS, 1983, 26 (05) :1288-1291
[4]   Physics of magnetically confined plasmas [J].
Boozer, AH .
REVIEWS OF MODERN PHYSICS, 2004, 76 (04) :1071-1141
[5]   PLASMA EQUILIBRIUM WITH RATIONAL MAGNETIC-SURFACES [J].
BOOZER, AH .
PHYSICS OF FLUIDS, 1981, 24 (11) :1999-2003
[6]   Foundations of nonlinear gyrokinetic theory [J].
Brizard, A. J. ;
Hahm, T. S. .
REVIEWS OF MODERN PHYSICS, 2007, 79 (02) :421-468
[7]  
Brizard AJ, 2022, Arxiv, DOI arXiv:2208.09477
[8]   Gauge-free electromagnetic gyrokinetic theory [J].
Burby, J. W. ;
Brizard, A. J. .
PHYSICS LETTERS A, 2019, 383 (18) :2172-2175
[9]   The optimization of resonant magnetic perturbation spectra for the COMPASS tokamak [J].
Cahyna, P. ;
Panek, R. ;
Fuchs, V. ;
Krlin, L. ;
Becoulet, M. ;
Huysmans, G. ;
Nardon, E. .
NUCLEAR FUSION, 2009, 49 (05)
[10]   ELM destabilization by externally applied non-axisymmetric magnetic perturbations in NSTX [J].
Canik, J. M. ;
Maingi, R. ;
Evans, T. E. ;
Bell, R. E. ;
Gerhardt, S. P. ;
Kugel, H. W. ;
LeBlanc, B. P. ;
Manickam, J. ;
Menard, J. E. ;
Osborne, T. H. ;
Park, J. -K. ;
Paul, S. ;
Snyder, P. B. ;
Sabbagh, S. A. ;
Unterberg, E. A. .
NUCLEAR FUSION, 2010, 50 (03)