Global Transcriptome Analysis Reveals Corresponding Genes and Key Pathways Involved in Oxidative Stress in Mouse Small Intestinal Cells

被引:0
|
作者
He, Y. [1 ,2 ]
Feng, C. P. [2 ]
Li, J. L. [1 ]
Du, R. [1 ]
机构
[1] Shanxi Agr Univ, Coll Vet Med, Taigu 030801, Shanxi, Peoples R China
[2] Lyuliang Univ, Dept Life Sci, Lishi 033000, Shanxi, Peoples R China
关键词
small intestinal cell; oxidative stress; transcriptome sequencing; GO annotation; KEGG pathway; PPI network; EPITHELIAL-CELLS; DAMAGE; RNA;
D O I
10.1134/S0026893324700365
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Understanding the molecular mechanisms involved in the effects of oxidative stress in humans and animals is important to minimize the damage it causes, leading to various intestinal diseases. Our aim is to study the genes and pathways involved in oxidative stress in the gut using mouse small intestinal epithelial cells (MODE-K) as a model. The MODE-K cell line was divided into two different groups: one group was treated with hydrogen peroxide (H2O2) and the other group was not. To analyze the effects of H2O2 exposure, cell viability, apoptosis rate and reactive oxygen species (ROS) levels were determined. Next, transcriptome sequencing was performed, differentially expressed genes (DEGs) were identified and function annotation was performed, followed by a series of bioinformatics analyses. Real-time PCR was used to confirm the transcriptome data. Our results showed that H2O2-induced oxidative stress significantly increased ROS synthesis and promoted cell apoptosis in mouse small intestinal epithelial cells. During oxidative stress, 1207 DEGs (859 up-regulated, 348 down-regulated) were identified. According to GO analysis, DEGs are annotated into 51 different GO classifications including 22 biological processes, 15 cellular components and 14 molecular functions. In addition, using KEGG, PPI and correlation analysis, the two most significant subnetworks were identified. Ten correlated nodal DEGs of the first subnetwork correspond to MAPK, NF-kappa B and PI3K-AKT signaling pathways, and six correlated DEGs of the second subnetwork are associated with mitochondria. KDM6B was found to link these two subnetworks. The results suggest that oxidative stress affects epithelial growth, metabolism and apoptosis in a mouse model of intestinal cells through signaling pathways such as MAPK and PI3K/AKT/NF-kappa B, and mitochondria-related genes that are interconnected through the PTGS2-KDM6B-MT-ATP6 pathway.
引用
收藏
页码:790 / 802
页数:13
相关论文
共 50 条
  • [21] Transcriptome Analysis Reveals Key Genes Involved in Weevil Resistance in the Hexaploid Sweetpotato
    Nokihara, Kanoko
    Okada, Yoshihiro
    Ohata, Shinichiro
    Monden, Yuki
    PLANTS-BASEL, 2021, 10 (08):
  • [22] Transcriptome analysis reveals key signature genes involved in the oncogenesis of lung cancer
    Meng, Fanlu
    Zhang, Linlin
    Ren, Yaoyao
    Ma, Qing
    CANCER BIOMARKERS, 2020, 29 (04) : 475 - 482
  • [23] Combined metabolome and transcriptome analysis reveals the key pathways involved in the responses of soybean plants to high Se stress
    Liu, Ying
    Li, Jianyu
    Shi, Jianning
    Pan, Yuhu
    Yang, Shaoxia
    Xue, Yingbin
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2024, 287
  • [24] Transcriptome Analysis Reveals Key Genes and Pathways Associated with Metastasis in Breast Cancer
    Li, Wei
    Liu, Jianling
    Zhang, Bin
    Bie, Qingli
    Qian, Hui
    Xu, Wenrong
    ONCOTARGETS AND THERAPY, 2020, 13 : 323 - 335
  • [25] Transcriptome analysis reveals key genes and pathways for prickle development in Zanthoxylum armatum
    Wang, Yi
    Jiang, Yuhui
    Feng, Fayu
    Guo, Yongqing
    Hao, Jiabo
    Huyan, Li
    Du, Chunhua
    Xu, Liang
    Lu, Bin
    HELIYON, 2024, 10 (05)
  • [26] Transcriptome analysis reveals key genes and pathways associated with piglet fetal mummification
    Wang, Shujie
    Wu, Pingxian
    Wang, Kai
    Ji, Xiang
    Chen, Dong
    Jiang, Anan
    Liu, Yihui
    Xiao, Weihang
    Jiang, Yanzhi
    Zhu, Li
    Xu, Xu
    Li, Mingzhou
    Li, Xuewei
    Tang, Guoqing
    GENOME, 2021, 64 (12) : 1029 - 1040
  • [27] Transcriptome analysis reveals key regulatory networks and genes involved in the acquisition of cold stress memory in pepper seedlings
    Li, Jian
    Yang, Ping
    Fu, Hongbo
    Li, Juan
    Wang, Yanzhuang
    Zhu, Keyan
    Yu, Jihua
    Li, Jie
    BMC PLANT BIOLOGY, 2024, 24 (01):
  • [28] Transcriptome Analysis Reveals Key Genes Involved in the Response of Pyrus betuleafolia to Drought and High-Temperature Stress
    Ma, Panpan
    Guo, Guoling
    Xu, Xiaoqian
    Luo, Tingyue
    Sun, Yu
    Tang, Xiaomei
    Heng, Wei
    Jia, Bing
    Liu, Lun
    Kim, Nam-Soo
    PLANTS-BASEL, 2024, 13 (02):
  • [29] Transcriptome analysis reveals candidate genes involved in nitrogen deficiency stress in apples
    Wen, Binbin
    Gong, Xingyao
    Chen, Xiude
    Tan, Qiuping
    Li, Ling
    Wu, Hongyu
    JOURNAL OF PLANT PHYSIOLOGY, 2022, 279
  • [30] Transcriptome sequencing reveals genes involved in cadmium-triggered oxidative stress in the chicken heart
    Yu, Chunlin
    Qiu, Mohan
    Zhang, Zengrong
    Song, Xiaoyan
    Du, Huarui
    Peng, Han
    Li, Qingyun
    Yang, Li
    Xiong, Xia
    Xia, Bo
    Hu, Chenming
    Chen, Jialei
    Jiang, Xiaosong
    Yang, Chaowu
    POULTRY SCIENCE, 2021, 100 (03)