Research on the Performance Improvement Method for Lithium-Ion Battery in High-Power Application Scenarios

被引:1
|
作者
Zhou, Pengfei [1 ]
Zhu, Liying [2 ]
Fu, Dawei [2 ]
Du, Jianguo [1 ]
Zhao, Xinze [3 ,4 ]
Sun, Bingxiang [3 ,4 ]
机构
[1] Tianjin Space Power Technol Co Ltd, Tianjin 300484, Peoples R China
[2] Inst Spacecraft Syst Engn CAST, Beijing 100044, Peoples R China
[3] Beijing Jiaotong Univ, Natl Act Distribut Network Technol Res Ctr NANTEC, Beijing 100044, Peoples R China
[4] Beijing Jiaotong Univ, Key Lab Vehicular Multienergy Drive Syst VMEDS, Minist Educ, Beijing 100044, Peoples R China
关键词
high-power lithium-ion batteries; instantaneous high-rate discharge; high-performance cathode materials; high-quality electrolyte additive materials; high-quality conductive agents; ELECTROCHEMICAL PERFORMANCE; CARBON NANOTUBES; CATHODE;
D O I
10.3390/en17071746
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the development of technology, high-power lithium-ion batteries are increasingly moving towards high-speed discharge, long-term continuous output, instantaneous high-rate discharge, and miniaturization, and are being gradually developed towards the fields of electric tools, port machinery and robotics. Improving the power performance of batteries can be achieved from multiple dimensions, such as electrochemical systems and battery design. In order to improve the power performance of lithium-ion batteries, this paper proposes design methods from the perspective of electrochemical systems, which include increasing the high-rate discharge capacity and low impedance of the battery. This article also studies the preparation of high-power lithium-ion batteries. This article aims to improve the rate performance of batteries by studying high-performance cathode materials, excellent conductive networks, and high-performance electrolytes. This article successfully screened high-performance cathode materials by comparing the effects of different particle sizes of cathode materials on electrode conductivity and battery internal resistance. By comparing the effects of electrolyte additives under pulse cycling, high-quality electrolyte additive materials were selected. By comparing the effects of different types, contents, and ratios of conductive agents on electrode conductivity, battery internal resistance, high-quality conductive agents, and appropriate ratios were selected. Finally, a 10 Ah cylindrical high-power lithium-ion battery with a specific energy of 110 Wh/kg, pulse discharge specific power of 11.3 kW/kg, an AC internal resistance of <= 0.7 m omega, a 10C full capacity discharge cycle of over 1700, a 30C full capacity discharge cycle of over 500, and a continuous discharge capacity of 10C-30C, and a pulse discharge capacity of over 100C was prepared.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Performance of Cathode Material of High-Power Lithium-Ion Battery
    Chen, Jiaxing
    Su, Zilong
    Zhao, Ting
    Pu, Ganggang
    Li, Ang
    Wang, Lve
    Xiyou Jinshu/Chinese Journal of Rare Metals, 2023, 47 (12): : 1756 - 1764
  • [2] Development of a high-power lithium-ion battery
    Jansen, AN
    Kahaian, AJ
    Kepler, KD
    Nelson, PA
    Amine, K
    Dees, DW
    Vissers, DR
    Thackeray, MM
    JOURNAL OF POWER SOURCES, 1999, 81 : 902 - 905
  • [3] Estimation on the pulse power capability of high-power lithium-ion battery pack
    School of Transportation Science and Engineering, Beihang University, Beijing 100191, China
    不详
    不详
    Qiche Gongcheng, 2013, 4 (298-302):
  • [4] The model of PNGV of High-power Lithium-ion Battery and test validation
    Wang, Bo
    Zhou, Wei
    Shi, Hui-qi
    Li, Bin
    MECHATRONICS ENGINEERING, COMPUTING AND INFORMATION TECHNOLOGY, 2014, 556-562 : 270 - +
  • [5] Strategy for Lithium-Ion Battery Performance Improvement during Power Cycling
    Eddahech, Akram
    Briat, Olivier
    Vinassa, Jean-Michel
    39TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2013), 2013, : 6806 - 6811
  • [6] Research on the low performance of power lithium-ion battery in electric vehicle
    Lei Zhi-guo
    Zhang Cheng-ning
    Li Jun-qiu
    2014 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC) ASIA-PACIFIC 2014, 2014,
  • [7] The application of TOPSIS in the study of the comprehensive performance of lithium-ion power battery
    Zhai Yan
    Zhang Weige
    Sun Bing-xiang
    Zheng Fangdan
    Zhang Man
    2014 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC) ASIA-PACIFIC 2014, 2014,
  • [8] Implementation and design of high-power fast charger for lithium-ion battery pack
    Pai, Kai-Jun
    Chien, Ming-De
    Hsieh, Chu-Chung
    Cheng, Ming-Yao
    Liang, Cheng-Kuan
    Lo, Yu-Kang
    Liu, Yu-Chen
    Tseng, Po-Jung
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2014, 42 (11) : 1154 - 1171
  • [9] A New Fault Diagnosis and Prognosis Technology for High-Power Lithium-Ion Battery
    Wu, Chao
    Zhu, Chunbo
    Ge, Yunwang
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2017, 45 (07) : 1533 - 1538
  • [10] A new electrochemical impedance spectroscopy model of a high-power lithium-ion battery
    Zhu, J. G.
    Sun, Z. C.
    Wei, X. Z.
    Dai, H. F.
    RSC ADVANCES, 2014, 4 (57): : 29988 - 29998