共 50 条
Effects of pressure on soot formation in laminar coflow kerosene diffusion flames at pressures between 1 and 20 atm
被引:3
|作者:
Shang, Jialin
[1
]
Gan, Zhiwen
[1
,2
]
Li, Jiacheng
[1
]
机构:
[1] Beihang Univ, Res Inst Aeroengine, 37 Xueyuan Rd, Beijing 100191, Peoples R China
[2] Beihang Univ, Natl Key Lab Sci & Technol Aeroengine Aerothermody, 37 Xueyuan Rd, Beijing 100191, Peoples R China
关键词:
Soot;
Surface growth;
Kerosene;
Diffusion flame;
PARTICLE-SIZE;
JET A-1;
ETHYLENE;
D O I:
10.1007/s10973-024-13030-w
中图分类号:
O414.1 [热力学];
学科分类号:
摘要:
Pressure has important effects on soot formation processes in kerosene flames. The impact of pressure on soot processes, particularly surface growth, in kerosene flames remains incompletely understood, primarily due to insufficient experimental support. Although several soot surface growth models in previous studies exhibit excellent predictive capability at atmospheric pressure, deviations of the prediction by these models and experimental result still need to reduce at high pressure. This paper presents a novel soot surface growth model which utilizes the Chebyshev polynomials method to capture the impact of pressure on the reaction rate of surface growth. The impact of pressure on soot production of RP-3 kerosene flames from 1 to 20 atm is numerically studied, with experimental validation from the pressure range from 1 to 3.5 atm. A comparison is made between the experimental and numerical results, highlighting the favorable predictive performance of the current surface growth model on the soot volume fraction and soot yield. Furthermore, a subsequent numerical study shows that the pressure dependency of the soot yield decreases as the pressure further increases from 5 to 20 atm. This study presents a pressure-dependent model for soot surface growth, which serves as a basis for further researches of soot formation in kerosene flames at high pressure.
引用
收藏
页码:4733 / 4753
页数:21
相关论文