Multiple in-situ measurement of water transport in the bipolar plate of proton exchange membrane fuel cell

被引:1
|
作者
Kim, Taehyeong [1 ]
Kim, Younghyeon [1 ]
Han, Jaesu [1 ]
Yu, Sangseok [2 ]
机构
[1] Chungnam Natl Univ, Grad Sch, Dept Mech Engn, 99 Daehak Ro, Daejeon 34134, South Korea
[2] Chungnam Natl Univ, Sch Mech Engn, 99 Daehak Ro, Daejeon 34134, South Korea
基金
新加坡国家研究基金会;
关键词
PEMFC; Water transport; In -situ measurement; Flow field; Single cell; RELATIVE-HUMIDITY; LIQUID WATER; FLOW-FIELD; TEMPERATURE; PEMFC;
D O I
10.1016/j.ijheatmasstransfer.2024.125269
中图分类号
O414.1 [热力学];
学科分类号
摘要
Water concentration inside proton exchange membrane fuel cells (PEMFCs) is a key factor affecting performance and durability. Therefore, many studies have been conducted to maintain an appropriate moisture balance inside the stack. The most recent study was a study that confirmed moisture distribution using five sensors inside the anode and cathode. However, in this study, it is difficult to determine the exact moisture distribution inside the stack due to insufficient sensors. In this study, a unit cell PEMFC including micro relative humidity and temperature (RH/T) sensors with an active area of 100cm2 was fabricated to characterize the water concentration. Before installing the micro sensors into the bipolar plates, a reliability test is conducted, and the result shows that the sensor is reliable at 60 degrees C and 70 degrees C. After that, for the in-situ temperature and relative humidity measurement, the 50 sensors are installed along the anode and cathode gas channels evenly in the active area. This study investigates the distribution of water transport behavior, temperature, and water concentration at 0.6 V, 0.5 V and 0.4 V of electric load. Dew point is introduced to analyze water concentration, and net water mole flux is calculated to evaluate water transport behavior. The results show that as the load applied to the PEMFC increases, higher temperature band expands from downstream to upstream of the gas flow. In addition, at 0.4 V, observing the highest temperature band between 61 degrees C to 62 degrees C, it is concluded that the flow field of the reaction zone is more activated along the downstream. Meanwhile, the anode becomes more dehydrated with higher load and the cathode more hydrated. At 0.4 V, the maximum dew point on the cathode is 37.5 degrees C, and the minimum dew point on the anode is 30 degrees C. In conclusion, even though water transports from the cathode to the anode, due to dry inlet gas, 20% of relative humidity, and high flow rate, hydrogen by 2.8lpm and air by 6.65lpm, the anode doesn't become hydrated.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] In-situ membrane hydration measurement of proton exchange membrane fuel cells
    Lai, Yeh-Hung
    Fly, Gerald W.
    Clapham, Shawn
    JOURNAL OF POWER SOURCES, 2015, 274 : 324 - 337
  • [2] Bipolar Plate Design Assessment: Proton Exchange Membrane Fuel Cell and Water Electrolyzer
    Sarjuni, C. T. Aisyah
    Shahril, Ahmad Adam Danial
    Low, Hock Chin
    Lim, Bee Huah
    FUEL CELLS, 2024, 24 (03)
  • [3] In-situ estimation of water transfer parameters in a proton exchange membrane fuel cell
    Bligny, Remi
    Schmitt, Tobias
    Dillet, Jerome
    Xu, Feina
    Didierjean, Sophie
    Hanauer, Matthias
    Sauter, Ulrich
    Maranzana, Gael
    JOURNAL OF POWER SOURCES, 2023, 560
  • [4] Membrane Catalysts and Bipolar Plate Materials for Proton Exchange Membrane Fuel Cell
    Dihrab, Salwan S.
    Zaharim, A.
    Sopian, K.
    RECENT ADVANCES IN ENERGY AND ENVIRONMENT: PROCEEDINGS OF THE 4TH IASME/WSEAS INTERNATIONAL CONFERENCE ON ENERGY AND ENVIRONMENT (EE'09), 2009, : 371 - +
  • [5] Study on metallic bipolar plate for proton exchange membrane fuel cell
    Matsuura, Toyoaki
    Kato, Megumi
    Hori, Michio
    JOURNAL OF POWER SOURCES, 2006, 161 (01) : 74 - 78
  • [6] Design optimization of proton exchange membrane fuel cell bipolar plate
    Wilberforce, Tabbi
    Olabi, A. G.
    Monopoli, Domenico
    Dassisti, M.
    Sayed, Enas Taha
    Abdelkareem, Mohammad Ali
    ENERGY CONVERSION AND MANAGEMENT, 2023, 277
  • [7] Hybrid type bipolar plate for proton exchange membrane fuel cell
    Kim, J
    Goo, Y
    Yoo, S
    KORUS 2005, PROCEEDINGS, 2005, : 462 - 465
  • [8] Bipolar plate materials for proton exchange membrane fuel cell application
    Gautam, Rajeev K.
    Banerjee, Soma
    Kar, Kamal K.
    Recent Patents on Materials Science, 2015, 8 (01) : 15 - 45
  • [9] In situ diagnostics for water transport in proton exchange membrane fuel cells
    Tsushima, Shohji
    Hirai, Shuichiro
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2011, 37 (02) : 204 - 220
  • [10] In-situ measurement of humidity distribution and its effect on the performance of a proton exchange membrane fuel cell
    Zhao, Junjie
    Tu, Zhengkai
    Chan, Siew Hwa
    ENERGY, 2022, 239