An experimental investigation of liquid immersion cooling of a four cell lithium-ion battery module

被引:9
|
作者
Williams, N. P. [1 ]
Trimble, D. [1 ]
'Shaughnessy, S. M. [1 ]
机构
[1] Univ Dublin, Trinity Coll, Dept Mech Mfg & Biomed Engn, Dublin, Ireland
基金
爱尔兰科学基金会;
关键词
Immersion cooling; Electric vehicles; Fast charging; Dielectric liquid; Battery thermal management; Two-phase cooling; THERMAL MANAGEMENT;
D O I
10.1016/j.est.2024.111289
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The thermal management of a lithium -ion battery module subjected to direct contact liquid immersion cooling conditions is experimentally investigated in this study. Four 2.5 Ah 26650 LiFePO 4 cylindrical cells in a square arrangement and connected electrically in parallel are completely immersed in the dielectric fluid Novec 7000. The thermal and electrical behaviour of the module is assessed at charging and discharging rates of 1C to 4C. Experiments are conducted with initially ambient temperature liquid, resulting in single phase natural convection cooling, as well as preheated liquid temperatures of 33 degrees C +/- 0.5 degrees C to study the influence of the phase change process under pool boiling conditions. Superior performance is observed when two-phase immersion cooling conditions are established for discharge rates of 2C and above, limiting the average cell temperature rise to 1.9 degrees C at the end of 4C discharge, corresponding to a maximum temperature of 34.7 degrees C. For the most onerous charging rate of 4C, considered fast charging, this maximum temperature rise is limited to 1.3 degrees C, corresponding to a maximum temperature of 35 degrees C. Vigorous boiling is observed from the cells ' electrodes, leading to more effective heat transfer from the locations of high heat flux. Excellent module thermal homogeneity is exhibited, maintaining a maximum temperature difference of 1.2 degrees C for all cases investigated. The axial temperature gradients of the module ' s individual cells are also greatly reduced under two-phase conditions. The influence of cell spacing within the module is also investigated for inter -cell spacings of 0.25 D and 1 D , where D is the cell diameter. Marginally improved heat transfer performance is observed for the more closely spaced cell arrangements, reducing the maximum cell temperatures and thermal inhomogeneity within the module.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Experimental investigation on thermal management of lithium-ion battery with roll bond liquid cooling plate
    Chen, Zhaoliang
    Yang, Shu
    Pan, Minqiang
    Xu, Jing
    Applied Thermal Engineering, 2022, 206
  • [12] Thermal management for the 18650 lithium-ion battery pack by immersion cooling with fluorinated liquid
    Li, Yang
    Bai, Minli
    Zhou, Zhifu
    Wu, Wei-Tao
    Hu, Chengzhi
    Gao, Linsong
    Liu, Xinyu
    Li, Yubai
    Song, Yongchen
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [13] Thermal management for the prismatic lithium-ion battery pack by immersion cooling with Fluorinated liquid
    Li, Yang
    Bai, Minli
    Zhou, Zhifu
    Wu, Wei-Tao
    Wei, Lei
    Hu, Chengzhi
    Liu, Xinyu
    Gao, Shuai
    Li, Yubai
    Song, Yongchen
    APPLIED THERMAL ENGINEERING, 2024, 257
  • [14] Experimental studies of reciprocating liquid immersion cooling for 18650 lithium-ion battery under fast charging conditions
    Li, Yang
    Bai, Minli
    Zhou, Zhifu
    Wu, Wei-Tao
    Lv, Jizu
    Gao, Linsong
    Huang, Heng
    Li, Yubai
    Song, Yongchen
    JOURNAL OF ENERGY STORAGE, 2023, 64
  • [15] Experimental investigations of liquid immersion cooling for 18650 lithium-ion battery pack under fast charging conditions
    Li, Yang
    Bai, Minli
    Zhou, Zhifu
    Wu, Wei-Tao
    Lv, Jizu
    Gao, Linsong
    Huang, Heng
    Li, Yulong
    Li, Yubai
    Song, Yongchen
    APPLIED THERMAL ENGINEERING, 2023, 227
  • [16] Experimental Study on Dielectric Fluid Immersion Cooling for Thermal Management of Lithium-Ion Battery
    Han, Jeong-Woo
    Garud, Kunal Sandip
    Hwang, Seong-Guk
    Lee, Moo-Yeon
    SYMMETRY-BASEL, 2022, 14 (10):
  • [17] Experimental study on a novel compact cooling system for cylindrical lithium-ion battery module
    Wang, Yiwei
    Peng, Peng
    Cao, Wenjiong
    Dong, Ti
    Zheng, Yaodong
    Lei, Bo
    Shi, Youjie
    Jiang, Fangming
    APPLIED THERMAL ENGINEERING, 2020, 180 (180)
  • [18] Experimental Investigation on a Thermoelectric Cooler for Thermal Management of a Lithium-Ion Battery Module
    Li, Xinxi
    Zhong, Zhaoda
    Luo, Jinghai
    Wang, Ziyuan
    Yuan, Weizhong
    Zhang, Guoqing
    Yang, Chengzhao
    Yang, Chuxiong
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2019, 2019
  • [19] Numerical study on cooling of prismatic lithium-ion battery module
    Mark, Addanki
    Ramanjaneyulu, Randhi Bulli Kanaka
    Kiran, Redagaani Uday
    Vardhan, Vantipalli Harsha
    Jilte, Ravindra
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 10975 - 10979
  • [20] Performance investigation of a liquid immersion cooling system with fish-shaped bionic structure for Lithium-ion battery pack
    Gao, Qiang
    Lei, Zhigang
    Huang, Yongping
    Zhang, Chengbin
    Chen, Yongping
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 222