Characterising the glass transition temperature-structure relationship through a recurrent neural network

被引:8
作者
Borredon, Claudia [1 ]
Miccio, Luis A. [2 ,3 ]
Cerveny, Silvina [1 ,2 ]
Schwartz, Gustavo A. [1 ,2 ]
机构
[1] Univ Basque Country, CSIC, Ctr Fis Mat, Mat Phys Ctr MPC, P M Lardizabal 5, San Sebastian 20018, Spain
[2] Donostia Int Phys Ctr, P M Lardizabal 4, San Sebastian 20018, Spain
[3] Natl Res Council CONICET, Inst Mat Sci & Technol INTEMA, Colon 10850, RA-7600 Buenos Aires, Argentina
来源
JOURNAL OF NON-CRYSTALLINE SOLIDS-X | 2023年 / 18卷
关键词
QSPR; Machine learning; Molecular glass former; Amino acid; RNN; DIELECTRIC-SPECTROSCOPY; PHYSICAL-PROPERTIES; PREDICTION; QSPR;
D O I
10.1016/j.nocx.2023.100185
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Quantitative structure-property relationship (QSPR) is a powerful analytical method to find correlations between the structure of a molecule and its physicochemical properties. The glass transition temperature (Tg) is one of the most reported properties, and its characterisation is critical for tuning the physical properties of materials. In this work, we explore the use of machine learning in the field of QSPR by developing a recurrent neural network (RNN) that relates the chemical structure and the glass transition temperature of molecular glass formers. In addition, we performed a chemical embedding from the last hidden layer of the RNN architecture into an mdimensional Tg-oriented space. Then, we test the model to predict the glass transition temperature of essential amino acids and peptides. The results are very promising and they can open the door for exploring and designing new materials.
引用
收藏
页数:8
相关论文
共 38 条
  • [1] Principal component analysis
    Abdi, Herve
    Williams, Lynne J.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04): : 433 - 459
  • [2] A Review on Methods and Theories to Describe the Glass Transition Phenomenon: Applications in Food and Pharmaceutical Products
    Abiad, M. G.
    Carvajal, M. T.
    Campanella, O. H.
    [J]. FOOD ENGINEERING REVIEWS, 2009, 1 (02) : 105 - 132
  • [3] Explainable Machine Learning Algorithms For Predicting Glass Transition Temperatures
    Alcobaca, Edesio
    Mastelini, Saulo Martiello
    Botari, Tiago
    Pimentel, Bruno Almeida
    Cassar, Daniel Roberto
    de Leon Ferreira de Carvalho, Andre Carlos Ponce
    Zanotto, Edgar Dutra
    [J]. ACTA MATERIALIA, 2020, 188 : 92 - 100
  • [4] FORMATION OF GLASSES FROM LIQUIDS AND BIOPOLYMERS
    ANGELL, CA
    [J]. SCIENCE, 1995, 267 (5206) : 1924 - 1935
  • [5] [Anonymous], 2023, Personal communication
  • [6] EFFECT OF MOLECULAR-WEIGHT ON GLASS-TRANSITION BY DIFFERENTIAL SCANNING CALORIMETRY
    BLANCHARD, LP
    HESSE, J
    MALHOTRA, SL
    [J]. CANADIAN JOURNAL OF CHEMISTRY, 1974, 52 (18) : 3170 - 3175
  • [7] Predicting glass transition temperatures using neural networks
    Cassar, Daniel R.
    de Carvalho, Andre C. P. L. F.
    Zanotto, Edgar D.
    [J]. ACTA MATERIALIA, 2018, 159 : 249 - 256
  • [8] Towards an improved understanding of glass transition and relaxations in foods: molecular mobility in the glass transition range
    Champion, D
    Le Meste, M
    Simatos, D
    [J]. TRENDS IN FOOD SCIENCE & TECHNOLOGY, 2000, 11 (02) : 41 - 55
  • [9] Predicting Polymers' Glass Transition Temperature by a Chemical Language Processing Model
    Chen, Guang
    Tao, Lei
    Li, Ying
    [J]. POLYMERS, 2021, 13 (11)
  • [10] Artificial intelligence in drug discovery: applications and techniques
    Deng, Jianyuan
    Yang, Zhibo
    Ojima, Iwao
    Samaras, Dimitris
    Wang, Fusheng
    [J]. BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)