MAGRes-UNet: Improved Medical Image Segmentation Through a Deep Learning Paradigm of Multi-Attention Gated Residual U-Net

被引:12
作者
Hussain, Tahir [1 ]
Shouno, Hayaru [1 ]
机构
[1] Univ Electrocommun, Grad Sch Informat & Engn, Dept Informat, Tokyo 1828585, Japan
关键词
Image segmentation; Decoding; Biomedical imaging; Logic gates; Feature extraction; Skin; Semantics; Brain cancer; Tumors; Medical diagnostic imaging; Medical treatment; Attention mechanism; brain tumor segmentation; Mish activation function; residual block; U-Net; LESION SEGMENTATION; DERMOSCOPY IMAGES; NETWORK; ARCHITECTURE;
D O I
10.1109/ACCESS.2024.3374108
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Precise segmentation is vital for successful diagnosis and treatment planning. Medical image segmentation has demonstrated remarkable advances with the introduction of deep convolutional neural networks, particularly encoder-decoder networks such as U-Net. Despite their excellent performances, these methods have some limitations. First, the structure is limited in its ability to combine information because feature maps to extract valid information from the final encoding stage are incompatible at the encoding and decoding levels. Second, the approach ignores significant semantic details and does not consider different types of small-scale contextual information when segmenting medical images. Lastly, most methods employing 3D architectures to process input medical images increase the computational complexity of the model without significantly improving the accuracy. To resolve these issues, we propose a segmentation network called Multi-Attention Gated Residual U-Net (MAGRes-UNet). This network incorporates four multi-attention gate (MAG) modules and residual blocks into a standard U-Net structure. The MAG module integrates the information from all encoding stages and focuses on small-scale tumors while disambiguating irrelevant and noisy feature responses, thereby promoting meaningful contextual information. The residual blocks simplify the network training and mitigate the problem of vanishing gradients. This improves the ability of the network to effectively learn intricate features and deep representations. Moreover, our network employs the Mish and ReLU activation functions (AFs), which utilize AdamW and Adam optimization strategies to achieve enhanced segmentation performance. The proposed MAGRes-UNet method was compared with the U-Net, Multi-Attention Gated-UNet (MAG-UNet), and Residual-UNet (ResUNet) models. In addition, a statistical T-test was performed to assess the difference in model significance between the approaches. The analysis revealed that MAGRes-UNet employing Mish and AdamW provides significant performance improvement over the ReLU AF and Adam optimizer on two benchmark datasets: Multi-Class BT T1-weighted Contrast-Enhanced Magnetic Resonance Imaging (T1-CE-MRI) and skin lesions HAM10000 (Human Against Machine with 10,000 training images). MAGRes-UNet using Mish and AdamW provides competitive performance over the representative medical image segmentation methods.
引用
收藏
页码:40290 / 40310
页数:21
相关论文
共 50 条
  • [21] ARGA-Unet: Advanced U-net segmentation model using residual grouped convolution and attention mechanism for brain tumor MRI image segmentation
    XUN S.
    ZHANG Y.
    DUAN S.
    WANG M.
    CHEN J.
    TONG T.
    GAO Q.
    LAM C.
    HU M.
    TAN T.
    Virtual Reality and Intelligent Hardware, 2024, 6 (03): : 203 - 216
  • [22] Image Segmentation of Rectal Tumor Based on Improved U-Net Model with Deep Learning
    Faguo Zhou
    Yuansheng Ye
    Yanan Song
    Journal of Signal Processing Systems, 2022, 94 : 1145 - 1157
  • [23] Image Segmentation of Rectal Tumor Based on Improved U-Net Model with Deep Learning
    Zhou, Faguo
    Ye, Yuansheng
    Song, Yanan
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2022, 94 (11): : 1145 - 1157
  • [24] DRA U-Net: An Attention based U-Net Framework for 2D Medical Image Segmentation
    Zhang, Xian
    Feng, Ziyuan
    Zhong, Tianchi
    Shen, Sicheng
    Zhang, Ruolin
    Zhou, Lijie
    Zhang, Bo
    Wang, Wendong
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 3936 - 3942
  • [25] CAT-Unet: An enhanced U-Net architecture with coordinate attention and skip-neighborhood attention transformer for medical image segmentation
    Ding, Zhiquan
    Zhang, Yuejin
    Zhu, Chenxin
    Zhang, Guolong
    Li, Xiong
    Jiang, Nan
    Que, Yue
    Peng, Yuanyuan
    Guan, Xiaohui
    INFORMATION SCIENCES, 2024, 670
  • [26] CFU-Net: A Coarse-Fine U-Net With Multilevel Attention for Medical Image Segmentation
    Yin, Haitao
    Shao, Yudong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [27] Efficient Generative-Adversarial U-Net for Multi-Organ Medical Image Segmentation
    Wang, Haoran
    Wu, Gengshen
    Liu, Yi
    JOURNAL OF IMAGING, 2025, 11 (01)
  • [28] CS U-NET: A Medical Image Segmentation Method Integrating Spatial and Contextual Attention Mechanisms Based on U-NET
    Zhang, Fanyang
    Fan, Zhang
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2025, 35 (02)
  • [29] Multi-scale-ResUNet: an improve u-net with multi-scale attention and hybrid dilation for medical image segmentation
    Jin, Tao
    Wang, Zhen
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (18) : 28473 - 28492
  • [30] Enhancing medical image segmentation with a multi-transformer U-Net
    Dan, Yongping
    Jin, Weishou
    Yue, Xuebin
    Wang, Zhida
    PEERJ, 2024, 12