Effects of Arbuscular Mycorrhizal Fungi on the Growth and Physiological Performance of Sophora davidii Seedling Under Low-Phosphorus Stress

被引:6
作者
Zhao, Li-Li [1 ]
Wang, Lei-ting [1 ]
Chen, Keke [1 ]
Sun, Hang [1 ]
Wang, Pu-Chang [2 ]
机构
[1] Guizhou Univ, Coll Anim Sci, Guiyang 550025, Peoples R China
[2] Guizhou Normal Univ, Sch Life Sci, Guiyang 550001, Peoples R China
关键词
Sophora davidii; Arbuscular mycorrhizal fungi; Low-phosphorus stress; Growth parameters; Physiological performance; ROOT-GROWTH; PLANTS; SYMBIOSIS; ACCUMULATION; SOIL; PHOTOSYNTHESIS; MICROORGANISMS; METABOLISM; TOLERANCE; RESPONSES;
D O I
10.1007/s00344-024-11273-3
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Sophora davidii is a multipurpose, nitrogen-fixing shrub species. Phosphorus deficiency in the acidic soil of Southwest China has seriously affected its survival and growth, especially in the seedling stage. Evidence suggests that arbuscular mycorrhizal fungi (AMF) may improve the stress tolerance of plants. However, there is limited information on the systematic effects of AMF on phosphorus deficiency in S. davidii seedlings. We investigated the effects of three phosphorus levels (0.5, 0.25, 0 mmol/L) and two mycorrhizal inoculation (with Funneliformis mosseae and without Funneliformis mosseae) treatments on the growth and physiological performance of S. davidii using factorial design. The results showed that low-phosphorus stress significantly limited the growth of S. davidii seedlings and negatively affected their physiological properties. However, inoculation with F. mosseae significantly improved the plant height and shoot dry weight, promoted root growth, increased chlorophyll contents and osmoregulation substance contents, increased protective enzyme activity, and significantly reducing the accumulation of malondialdehyde, alleviated oxidative stress induced by low-phosphorus stress, improved the IAA and GA(3) contents, and alleviated the negative effects of low-phosphorus stress. AMF-induced enhancement of aboveground growth and plant physiological characteristics is dependent on the P level and its impact on roots is regardless of phosphorus status. AMF inoculation significantly promoted the absorption of nitrogen and phosphorus in the roots (0.25- and 0-mmol/L treatments), thereby maintaining a higher biomass and relieving stress in S. davidii seedlings under low-phosphorus conditions. Our results demonstrated that AMF inoculation is useful for the promotion and cultivation of S. davidii in the karst area of Southwest China under low-phosphorus stress conditions.
引用
收藏
页码:2383 / 2395
页数:13
相关论文
共 50 条
  • [21] Dopamine and arbuscular mycorrhizal fungi act synergistically to promote apple growth under salt stress
    Gao, Tengteng
    Liu, Xiaomin
    Shan, Lei
    Wu, Qian
    Liu, Yuan
    Zhang, Zhijun
    Ma, Fengwang
    Li, Chao
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2020, 178
  • [22] Physiological responses of the two blueberry cultivars to inoculation with an arbuscular mycorrhizal fungus under low-temperature stress
    Liu, Xiao M.
    Xu, Qing L.
    Li, Qing Q.
    Zhang, Hong
    Xiao, Jia X.
    JOURNAL OF PLANT NUTRITION, 2017, 40 (18) : 2562 - 2570
  • [23] Effects of Arbuscular Mycorrhizal Fungi on the Growth and Root Cell Ultrastructure of Eucalyptus grandis under Cadmium Stress
    Kuang, Yuxuan
    Li, Xue
    Wang, Zhihao
    Wang, Xinyang
    Wei, Hongjian
    Chen, Hui
    Hu, Wentao
    Tang, Ming
    JOURNAL OF FUNGI, 2023, 9 (02)
  • [24] Effects of arbuscular mycorrhizal fungi on photosynthesis and chlorophyll fluorescence of maize seedlings under salt stress
    Xu, Hongwen
    Lu, Yan
    Tong, Shuyuan
    EMIRATES JOURNAL OF FOOD AND AGRICULTURE, 2018, 30 (03): : 199 - 204
  • [25] Cooperation between arbuscular mycorrhizal fungi and earthworms promotes the physiological adaptation of maize under a high salt stress
    Zhang, Wenwen
    Wang, Chong
    Lu, Tianyi
    Zheng, Yanjia
    PLANT AND SOIL, 2018, 423 (1-2) : 125 - 140
  • [26] Effects of using arbuscular mycorrhizal fungi to alleviate drought stress on the physiological traits and essential oil yield of fennel
    Zardak, Sedigheh Gheisari
    Dehnavi, Mohsen Movahhedi
    Salehi, Amin
    Gholamhoseini, Majid
    RHIZOSPHERE, 2018, 6 : 31 - 38
  • [27] Physiological and proteomic analyses reveal the important role of arbuscular mycorrhizal fungi on enhancing photosynthesis in wheat under cadmium stress
    Li, Hua
    Zhang, Lele
    Wu, Baocun
    Li, Yang
    Wang, Huijuan
    Teng, Huixin
    Wei, Dongwei
    Yuan, Zhiliang
    Yuan, Zuli
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2023, 261
  • [28] Comparative transcriptome analysis of the garden asparagus (Asparagus officinalis L.) reveals the molecular mechanism for growth with arbuscular mycorrhizal fungi under salinity stress
    Zhang, Xuhong
    Han, Changzhi
    Gao, Huimin
    Cao, Yanpo
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2019, 141 : 20 - 29
  • [29] Physiological Response of Citrus macrophylla Inoculated with Arbuscular Mycorrhizal Fungi under Salt Stress
    Navarro, Josefa M.
    Morte, Asuncion
    Rodriguez-Moran, Manuel
    Perez-Tornero, Olaya
    XII INTERNATIONAL CITRUS CONGRESS - INTERNATIONAL SOCIETY OF CITRICULTURE, 2015, 1065 : 1351 - 1358
  • [30] Synergistic interactions of arbuscular mycorrhizal fungi and rhizobia promoted the growth of Lathyrus sativus under sulphate salt stress
    Jin, Liang
    Sun, Xiangwei
    Wang, Xiaojuan
    Shen, Yuying
    Hou, Fujiang
    Chang, Shenghua
    Wang, Chang
    SYMBIOSIS, 2010, 50 (03) : 157 - 164