Asynchronous opinion dynamics in social networks

被引:1
|
作者
Berenbrink, Petra [1 ]
Hoefer, Martin [2 ]
Kaaser, Dominik [1 ]
Lenzner, Pascal [3 ]
Rau, Malin [1 ]
Schmand, Daniel [4 ]
机构
[1] Univ Hamburg, Dept Informat, Vogt Kolln Str 30, D-22527 Hamburg, Germany
[2] Goethe Univ Frankfurt, Dept Comp Sci, Robert Mayer Str 11-15, D-60325 Frankfurt, Germany
[3] Hasso Plattner Inst, Dr Helmert Str 2-3, D-14482 Potsdam, Germany
[4] Univ Bremen, Ctr Ind Math, Bibliothekstr 5, D-28359 Bremen, Germany
关键词
Hegselmann-Krause Systems; Opinion Formation; Asynchronous Dynamics; Social Networks; Convergence Time; FORMATION GAMES;
D O I
10.1007/s00446-024-00467-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Opinion spreading in a society decides the fate of elections, the success of products, and the impact of political or social movements. A prominent model to study opinion formation processes is due to Hegselmann and Krause. It has the distinguishing feature that stable states do not necessarily show consensus, i.e., the population of agents might not agree on the same opinion. We focus on the social variant of the Hegselmann-Krause model. There are n agents, which are connected by a social network. Their opinions evolve in an iterative, asynchronous process, in which agents are activated one after another at random. When activated, an agent adopts the average of the opinions of its neighbors having a similar opinion (where similarity of opinions is defined using a parameter epsilon \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} ). Thus, the set of influencing neighbors of an agent may change over time. We show that such opinion dynamics are guaranteed to converge for any social network. We provide an upper bound of O ( n | E | 2 ( epsilon / delta ) 2 ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {O}}(n|E|<^>2 (\varepsilon /\delta )<^>2)$$\end{document} on the expected number of opinion updates until convergence to a stable state, where | E | \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|E|$$\end{document} is the number of edges of the social network, and delta \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} is a parameter of the stability concept. For the complete social network we show a bound of O ( n 3 ( n 2 + ( epsilon / delta ) 2 ) ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {O}}(n<^>3(n<^>2 + (\varepsilon /\delta )<^>2))$$\end{document} that represents a major improvement over the previously best upper bound of O ( n 9 ( epsilon / delta ) 2 ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {O}}(n<^>9 (\varepsilon /\delta )<^>2)$$\end{document} .
引用
收藏
页码:207 / 224
页数:18
相关论文
共 50 条
  • [1] Modeling interactions in social media networks using an asynchronous and synchronous opinion dynamics
    Zareer, Mohamed N.
    Selmic, Rastko R.
    SOCIAL NETWORK ANALYSIS AND MINING, 2024, 14 (01)
  • [2] Opinion dynamics on social networks
    Xing Wang
    Bingjue Jiang
    Bo Li
    Acta Mathematica Scientia, 2022, 42 : 2459 - 2477
  • [3] Opinion dynamics on social networks
    Wang, Xing
    Jiang, Bingjue
    Li, Bo
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (06) : 2459 - 2477
  • [4] OPINION DYNAMICS ON SOCIAL NETWORKS
    王幸
    蒋冰珏
    李博
    ActaMathematicaScientia, 2022, 42 (06) : 2459 - 2477
  • [5] Asynchronous Expressed and Private Opinion Dynamics on Influence Networks
    Xia, Weiguo
    Liang, Hong
    Ye, Mengbin
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2023, 10 (02): : 544 - 555
  • [6] Shaping Opinion Dynamics in Social Networks
    De, Abir
    Bhattacharya, Sourangshu
    Ganguly, Niloy
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), 2018, : 1336 - 1344
  • [7] Opinion Dynamics and Learning in Social Networks
    Acemoglu, Daron
    Ozdaglar, Asuman
    DYNAMIC GAMES AND APPLICATIONS, 2011, 1 (01) : 3 - 49
  • [8] On the control of opinion dynamics in social networks
    Liu, Zhihong
    Ma, Jianfeng
    Zeng, Yong
    Yang, Li
    Huang, Qiping
    Wu, Hongliang
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 409 : 183 - 198
  • [9] Modeling Opinion Dynamics in Social Networks
    Das, Abhimanyu
    Gollapudi, Sreenivas
    Munagala, Kamesh
    WSDM'14: PROCEEDINGS OF THE 7TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2014, : 403 - 412
  • [10] Opinion Dynamics and Learning in Social Networks
    Daron Acemoglu
    Asuman Ozdaglar
    Dynamic Games and Applications, 2011, 1 : 3 - 49