On a Schro<spacing diaeresis>dinger-Kirchhoff Type Equation Involving the Fractional p-Laplacian without the Ambrosetti-Rabinowitz Condition

被引:0
|
作者
Bouabdallah, Mohamed [1 ]
Chakrone, Omar [1 ]
Chehabi, Mohammed [1 ]
机构
[1] Univ Mohammed 1st, Fac Sci, Dept Math & Comp, Lab Nonlinear Anal, Oujda, Morocco
关键词
fractional p-Laplacian operator; fractional Sobolev space; Schro center dot dinger-Kirchhoff type equation; Ambrosetti-Rabinowitz condition; variational methods; SEMILINEAR SCHRODINGER-EQUATIONS; ELLIPTIC PROBLEMS; DIRICHLET PROBLEM; EXISTENCE; MULTIPLICITY; TRANSPORT;
D O I
10.15407/mag20.01.041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the existence and multiplicity of many weak solutions for the following fractional Schr odinger-Kirchhoff type equation: (a+b integral integral(2N)(R)|u(x)-u(y)|p/|x-y|(N+ps)dxdy)(p-1)x(-triangle)(s)(p)u+lambda V(x)|u|(p-2)u =f(x,u) +h(x) inR(N), whereN > sp,a,b >0 are constants,lambda is a parameter, (-triangle)spis the frac-tionalp-Laplacian operator with 0< s <1< p <infinity, nonlinearityf(x,u)and potential functionV(x) satisfy some suitable assumptions. Under thoseconditions, some new results are obtained for lambda >0 large enough by applyingthe variation methods
引用
收藏
页码:41 / 65
页数:25
相关论文
共 50 条
  • [41] Infinitely Many Solutions for Critical Degenerate Kirchhoff Type Equations Involving the Fractional p-Laplacian
    Binlin, Zhang
    Fiscella, Alessio
    Liang, Sihua
    APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 80 (01): : 63 - 80
  • [42] Infinitely Many Solutions for Schrödinger-Choquard-Kirchhoff Equations Involving the Fractional p-Laplacian
    Li Wang
    Tao Han
    Ji Xiu Wang
    Acta Mathematica Sinica, English Series, 2021, 37 : 315 - 332
  • [43] THREE SOLUTIONS FOR A KIRCHHOFF-TYPE PROBLEM INVOLVING NONLOCAL FRACTIONAL p-LAPLACIAN
    Azroul, E.
    Benkirane, A.
    Srati, M.
    ADVANCES IN OPERATOR THEORY, 2019, 4 (04): : 821 - 822
  • [44] Multiple solutions for nonhomogeneous Schrodinger-Kirchhoff type equations involving the fractional p-Laplacian in RN
    Pucci, Patrizia
    Xiang, Mingqi
    Zhang, Binlin
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) : 2785 - 2806
  • [45] Multiplicity and asymptotic behavior of solutions to a class of Kirchhoff-type equations involving the fractional p-Laplacian
    Shen, Liejun
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [46] Infinitely many solutions for a new class of Schrodinger-Kirchhoff type equations in RN involving the fractional p-Laplacian
    Hamdani, Mohamed Karim
    Chung, Nguyen Thanh
    Bayrami-Aminlouee, Masoud
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2021, 7 (01) : 243 - 267
  • [47] Existence results for a Kirchhoff-type equation involving fractional p(x)-Laplacian
    Zhang, Jinguo
    Yang, Dengyun
    Wu, Yadong
    AIMS MATHEMATICS, 2021, 6 (08): : 8390 - 8403
  • [48] Existence and Hölder regularity of infinitely many solutions to a p-Kirchhoff-type problem involving a singular nonlinearity without the Ambrosetti–Rabinowitz (AR) condition
    Debajyoti Choudhuri
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [49] INFINITELY MANY SOLUTIONS FOR SCHRODINGER-KIRCHHOFF TYPE EQUATIONS INVOLVING THE FRACTIONAL p-LAPLACIAN AND CRITICAL EXPONENT
    Wang, Li
    Zhang, Binlin
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [50] Existence of nontrivial solutions for Schrodinger-Kirchhoff type equations involving the fractional p-Laplacian and local nonlinearity
    Gao, Liu
    Chen, Chunfang
    Chen, Jianhua
    Zhu, Chuanxi
    AIMS MATHEMATICS, 2021, 6 (02): : 1332 - 1347